Which patient is most at risk of developing permanently impaired mobility group of answer choices?

1. Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–713. doi:10.1016/j.cell.2014.10.039 [PMC free article] [PubMed] [Google Scholar]

2. Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol (Lond). 2015. doi:10.1113/jphysiol.2014.282665 [PMC free article] [PubMed] [Google Scholar]

3. Seals DR, Melov S. Translational geroscience: emphasizing function to achieve optimal longevity. Aging (Albany, NY). 2014;6:718–730. [PMC free article] [PubMed] [Google Scholar]

4. Cooper R, Sayers A, Kuh D, Hardy R.A life course approach to physical capability. In: Kuh D, Cooper R, Hardy R, Richards M, Ben-Shlomo Y, eds. A Life Course Approach to Healthy Ageing. Oxford, UK: Oxford University Press; 2014:16–31. [Google Scholar]

5. Clouston SA, Brewster P, Kuh D, et al. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol Rev. 2013;35:33–50. doi:10.1093/epirev/mxs004 [PMC free article] [PubMed] [Google Scholar]

6. Kennedy BK, Pennypacker JK. Drugs that modulate aging: the promising yet difficult path ahead. Transl Res. 2014;163:456–465. doi:10.1016/j.trsl.2013.11.007 [PMC free article] [PubMed] [Google Scholar]

7. Justice JN, Cesari M, Seals DR, Shively CA, Carter CS. Comparative approaches to understanding the relation between aging and physical function. J Gerontol A Biol Sci Med Sci. 2015. doi:10.1093/gerona/glv035 [PMC free article] [PubMed] [Google Scholar]

8. Warner HR. NIA’s Intervention Testing Program at 10 years of age. Age (Dordr). 2015;37:22 doi:10.1007/s11357-015-9761-5 [PMC free article] [PubMed] [Google Scholar]

9. Shock NW, Others A. Normal human aging: the Baltimore Longitudinal Study Of Aging. Eric Web site. http://eric.ed.gov/?id=ED292030 Accessed March 4, 2016. [Google Scholar]

10. Anton SD, Woods AJ, Ashizawa T, et al. Successful aging: advancing the science of physical independence in older adults. Ageing Res Rev. 2015;24(Pt B):304–327. doi:10.1016/j.arr.2015.09.005 [PMC free article] [PubMed] [Google Scholar]

11. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995;332:556–561. doi:10.1056/NEJM199503023320902 [PubMed] [Google Scholar]

12. Guralnik JM, Ferrucci L, Pieper CF, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–M231. doi:10.1093/gerona/55.4.M221 [PubMed] [Google Scholar]

13. Cooper R Kuh D Hardy R; Mortality Review Group; FALCon and HALCyon Study Teams . Objectively measured physical capability levels and mortality: systematic review and meta-analysis. BMJ. 2010;341:c4467 doi:10.1136/bmj.c4467 [PMC free article] [PubMed] [Google Scholar]

14. Cooper R, Kuh D, Cooper C, et al.; FALCon and HALCyon Study Teams Objective measures of physical capability and subsequent health: a systematic review. Age Ageing. 2011;40:14–23. doi:10.1093/ageing/afq117 [PMC free article] [PubMed] [Google Scholar]

15. Studenski S, Perera S, Patel K, et al. Gait speed and survival in older adults. JAMA. 2011;305:50–58. doi:10.1001/jama.2010.1923 [PMC free article] [PubMed] [Google Scholar]

16. Perera S, Patel KV, Rosano C, et al. Gait speed predicts incident disability: a pooled analysis. J Gerontol A Biol Sci Med Sci. 2016;71:63–71. doi:10.1093/gerona/glv126 [PMC free article] [PubMed] [Google Scholar]

17. Nybo H, Petersen HC, Gaist D, et al. Predictors of mortality in 2,249 nonagenarians—the Danish 1905-Cohort Survey. J Am Geriatr Soc. 2003;51:1365–1373. doi:10.1046/j.1532-5415.2003.51453.x [PubMed] [Google Scholar]

18. Sabia S, Dumurgier J, Tavernier B, Head J, Tzourio C, Elbaz A. Change in fast walking speed preceding death: results from a prospective longitudinal cohort study. J Gerontol A Biol Sci Med Sci. 2014;69:354–362. doi:10.1093/gerona/glt114 [PMC free article] [PubMed] [Google Scholar]

19. Artaud F, Singh-Manoux A, Dugravot A, Tzourio C, Elbaz A. Decline in fast gait speed as a predictor of disability in older adults. J Am Geriatr Soc. 2015;63:1129–1136. doi:10.1111/jgs.13442 [PubMed] [Google Scholar]

20. Kuh D; New Dynamics of Ageing (NDA) Preparatory Network A life course approach to healthy aging, frailty, and capability. J Gerontol A Biol Sci Med Sci. 2007;62:717–721. [PubMed] [Google Scholar]

21. Kuh D, Ben-Shlomo Y, eds. A Life Course Approach to Chronic Disease Epidemiology Oxford, UK: Oxford University Press; 2004. [PubMed] [Google Scholar]

22. Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. 2014;94:1027–1076. doi:10.1152/physrev.00029.2013 [PMC free article] [PubMed] [Google Scholar]

23. Ng JW, Barrett LM, Wong A, Kuh D, Smith GD, Relton CL. The role of longitudinal cohort studies in epigenetic epidemiology: challenges and opportunities. Genome Biol. 2012;13:246 doi:10.1186/gb-2012-13-6-246 [PMC free article] [PubMed] [Google Scholar]

24. van den Hout A, Muniz-Terrera G, Matthews FE. Smooth random change point models. Stat Med. 2011;30:599–610. doi:10.1002/sim.4127 [PubMed] [Google Scholar]

25. Shumway-Cook A, Guralnik JM, Phillips CL, et al. Age-associated declines in complex walking task performance: the Walking InCHIANTI toolkit. J Am Geriatr Soc. 2007;55:58–65. doi:10.1111/j.1532-5415.2006.00962.x [PMC free article] [PubMed] [Google Scholar]

26. Autenrieth CS, Karrasch S, Heier M, et al. Decline in gait performance detected by an electronic walkway system in 907 older adults of the population-based KORA-Age study. Gerontology. 2013;59:165–173. doi:10.1159/000342206 [PubMed] [Google Scholar]

27. Bellman M, Byrne O, Sege R. Developmental assessment of children. BMJ. 2013;346:e8687 doi:10.1136/bmj.e8687 [PubMed] [Google Scholar]

28. Thelen E. Motor development. A new synthesis. Am Psychol. 1995;50:79–95. doi:10.1037/0003-066X.50.2.79 [PubMed] [Google Scholar]

29. Beckung E, Carlsson G, Carlsdotter S, Uvebrant P. The natural history of gross motor development in children with cerebral palsy aged 1 to 15 years. Dev Med Child Neurol. 2007;49:751–756. doi:10.1111/j.1469-8749.2007.00751.x [PubMed] [Google Scholar]

30. Ferrucci L, Studenski S. Clinical problems of aging. In: Longo DL, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, Fauci AS, eds. Harrison’s Principles of Internal Medicine. New York, NY: McGraw-Hill; 2012:570–585. [Google Scholar]

31. Maccormick RE. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med Hypotheses. 2006;67:212–215. doi:10.1016/j.mehy.2006.01.045 [PubMed] [Google Scholar]

32. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35:2–16. doi:10.1016/j.neubiorev.2009.10.002 [PubMed] [Google Scholar]

33. Kritchevsky SB, de Cabo R. Energy—a hallmark of physical function. J Gerontol A Biol Sci Med Sci. 2015;70:1333 doi:10.1093/gerona/glv131 [PubMed] [Google Scholar]

34. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1–19. doi:10.1002/ajhb.20590 [PubMed] [Google Scholar]

35. Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci. 2008;63:1416–1419. doi:10.1093/gerona/63.12.1416 [PMC free article] [PubMed] [Google Scholar]

36. Kuh D, Pierce M, Adams J, et al.; NSHD Scientific and Data Collection Team. Cohort profile: updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. Int J Epidemiol. 2011;40:e1–e9. doi:10.1093/ije/dyq231 [PMC free article] [PubMed] [Google Scholar]

37. Kuh D, Hardy R, Butterworth S, et al. Developmental origins of midlife grip strength: findings from a birth cohort study. J Gerontol A Biol Sci Med Sci. 2006;61:702–706. doi:10.1093/gerona/61.7.702 [PubMed] [Google Scholar]

38. Strand BH, Cooper R, Hardy R, Kuh D, Guralnik J. Lifelong socioeconomic position and physical performance in midlife: results from the British 1946 birth cohort. Eur J Epidemiol. 2011;26:475–483. doi:10.1007/s10654-011-9562-9 [PMC free article] [PubMed] [Google Scholar]

39. Birnie K, Cooper R, Martin RM, et al.; HALCyon Study Team Childhood socioeconomic position and objectively measured physical capability levels in adulthood: a systematic review and meta-analysis. PLoS One. 2011;6:e15564 doi:10.1371/journal.pone.0015564 [PMC free article] [PubMed] [Google Scholar]

40. Eriksson JG, Osmond C, Perälä MM, et al. Prenatal and childhood growth and physical performance in old age–findings from the Helsinki Birth Cohort Study 1934–1944. Age (Dordr). 2015;37:108 doi:10.1007/s11357-015-9846-1 [PMC free article] [PubMed] [Google Scholar]

41. Martin HJ, Syddall HE, Dennison EM, Cooper C, Sayer AA. Physical performance and physical activity in older people: are developmental influences important? Gerontology. 2009;55:186–193. doi:10.1159/000174823 [PubMed] [Google Scholar]

42. Ridgway CL, Ong KK, Tammelin T, Sharp SJ, Ekelund U, Jarvelin MR. Birth size, infant weight gain, and motor development influence adult physical performance. Med Sci Sports Exerc. 2009;41:1212–1221. doi:10.1249/MSS.0b013e31819794ab [PubMed] [Google Scholar]

43. Aihie Sayer A, Cooper C, Evans JR, et al. Are rates of ageing determined in utero? Age Ageing. 1998;27:579–583. doi:10.1093/ageing/27.5.579 [PubMed] [Google Scholar]

44. Kuh D, Hardy R, Butterworth S, et al. Developmental origins of midlife physical performance: evidence from a British birth cohort. Am J Epidemiol. 2006;164:110–121. doi:10.1093/aje/kwj193 [PubMed] [Google Scholar]

45. Rutter M. Achievements and challenges in the biology of environmental effects. Proc Natl Acad Sci USA. 2012;109(suppl 2):17149–17153. doi:10.1073/pnas.1121258109 [PMC free article] [PubMed] [Google Scholar]

46. Cooper R, Muniz Terrera G, Kuh D. Neurodevelopmental pathways are associated with changes in physical capability in early old age. Gerontologist. 2013;53:S1. [Google Scholar]

47. Cooper R, Mishra GD, Kuh D. Physical activity across adulthood and physical performance in midlife: findings from a British birth cohort. Am J Prev Med. 2011;41:376–384. doi:10.1016/j.amepre.2011.06.035 [PMC free article] [PubMed] [Google Scholar]

48. Strand BH, Mishra G, Kuh D, Guralnik JM, Patel KV. Smoking history and physical performance in midlife: results from the British 1946 birth cohort. J Gerontol A Biol Sci Med Sci. 2011;66:142–149. doi:10.1093/gerona/glq199 [PMC free article] [PubMed] [Google Scholar]

49. Nelson HD, Nevitt MC, Scott JC, Stone KL, Cummings SR. Smoking, alcohol, and neuromuscular and physical function of older women. Study of Osteoporotic Fractures Research Group. JAMA. 1994;272:1825–1831. doi:10.1001/jama.1994.03520230035035 [PubMed] [Google Scholar]

50. van den Borst B, Koster A, Yu B, et al. Is age-related decline in lean mass and physical function accelerated by obstructive lung disease or smoking? Thorax. 2011;66:961–969. doi:10.1136/thoraxjnl-2011-200010 [PMC free article] [PubMed] [Google Scholar]

51. Patel KV, Coppin AK, Manini TM, et al. Midlife physical activity and mobility in older age: the InCHIANTI study. Am J Prev Med. 2006;31:217–224. doi:10.1016/j.amepre.2006.05.005 [PMC free article] [PubMed] [Google Scholar]

52. Tikkanen P, Nykänen I, Lönnroos E, Sipilä S, Sulkava R, Hartikainen S. Physical activity at age of 20–64 years and mobility and muscle strength in old age: a community-based study. J Gerontol A Biol Sci Med Sci. 2012;67:905–910. doi:10.1093/gerona/gls005 [PubMed] [Google Scholar]

53. Stenholm S, Koster A, Valkeinen H, et al. Association of physical activity history with physical function and mortality in old age. J Gerontol A Biol Sci Med Sci. 2015. doi:10.1093/gerona/glv111 [PMC free article] [PubMed] [Google Scholar]

54. Pluijm SM, Visser M, Puts MT, et al. Unhealthy lifestyles during the life course: association with physical decline in late life. Aging Clin Exp Res. 2007;19:75–83. [PubMed] [Google Scholar]

55. Cooper R, Kuh D, Muniz-Terrera G. Combined associations of behavioral risk factors and health status with changes in physical capability over ten years of follow-up: the MRC National Survey of Health and Development. [PMC free article] [PubMed]

56. Dodds RM, Syddall HE, Cooper R, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9:e113637 doi:10.1371/journal.pone.0113637 [PMC free article] [PubMed] [Google Scholar]

57. Perna FM, Coa K, Troiano RP, et al. U.S. population muscular grip-strength estimates from the National Health and Nutrition Examination Survey (NHANES) 2011–2012. J Strength Cond Res. 2016;30:867–874. doi:10.1519/JSC.0000000000001104 [PMC free article] [PubMed] [Google Scholar]

58. Peterson M D, Krishnan C. Growth charts for muscular strength capacity with quantile regression. Am J Prev Med. 2015;49:935–938. doi:10.1016/j.amepre.2015.05.013 [PMC free article] [PubMed] [Google Scholar]

59. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–1064. [PubMed] [Google Scholar]

60. Maden-Wilkinson TM, Degens H, Jones DA, McPhee JS. Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact. 2013;13:320–328. [PubMed] [Google Scholar]

61. Moore AZ, Caturegli G, Metter EJ, et al. Difference in muscle quality over the adult life span and biological correlates in the Baltimore Longitudinal Study of Aging. J Am Geriatr Soc. 2014;62:230–236. doi:10.1111/jgs.12653 [PMC free article] [PubMed] [Google Scholar]

62. Hardy R, Cooper R, Aihie Sayer A, et al.; HALCyon study team Body mass index, muscle strength and physical performance in older adults from eight cohort studies: the HALCyon programme. PLoS One. 2013;8:e56483 doi:10.1371/journal.pone.0056483 [PMC free article] [PubMed] [Google Scholar]

63. Houston DK, Ding J, Nicklas BJ, et al. The association between weight history and physical performance in the Health, Aging and Body Composition study. Int J Obes (Lond). 2007;31:1680–1687. doi:10.1038/sj.ijo.0803652 [PubMed] [Google Scholar]

64. Schaap LA, Koster A, Visser M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol Rev. 2013;35:51–65. doi:10.1093/epirev/mxs006 [PubMed] [Google Scholar]

65. Dodds R, Denison HJ, Ntani G, et al. Birth weight and muscle strength: a systematic review and meta-analysis. J Nutr Health Aging. 2012;16:609–615. doi:10.1007/s12603-012-0053-9 [PMC free article] [PubMed] [Google Scholar]

66. Senese LC, Almeida ND, Fath AK, Smith BT, Loucks EB. Associations between childhood socioeconomic position and adulthood obesity. Epidemiol Rev. 2009;31:21–51. doi:10.1093/epirev/mxp006 [PMC free article] [PubMed] [Google Scholar]

67. Bann D, Cooper R, Wills AK, Adams J, Kuh D; NSHD Scientific and Data Collection Team Socioeconomic position across life and body composition in early old age: findings from a British birth cohort study. J Epidemiol Community Health. 2014;68:516–523. doi:10.1136/jech-2013-203373 [PMC free article] [PubMed] [Google Scholar]

68. Hurst L, Stafford M, Cooper R, Hardy R, Richards M, Kuh D. Lifetime socioeconomic inequalities in physical and cognitive aging. Am J Public Health. 2013;103:1641–1648. doi:10.2105/AJPH.2013.301240 [PMC free article] [PubMed] [Google Scholar]

69. Cooper R, Bann D, Wloch EG, Adams JE, Kuh D. “Skeletal muscle function deficit” in a nationally representative British birth cohort in early old age. J Gerontol A Biol Sci Med Sci. 2015;70:604–607. doi:10.1093/gerona/glu214 [PMC free article] [PubMed] [Google Scholar]

70. Rantanen T, Masaki K, Foley D, Izmirlian G, White L, Guralnik JM. Grip strength changes over 27 yr in Japanese-American men. J Appl Physiol. 1998;85:2047–2053. [PubMed] [Google Scholar]

71. Rantanen T, Guralnik JM, Foley D, et al. Midlife hand grip strength as a predictor of old age disability. JAMA. 1999;281:558–560. doi:10.1001/jama.281.6.558 [PubMed] [Google Scholar]

72. den Ouden ME, Schuurmans MJ, Arts IE, van der Schouw YT. Physical performance characteristics related to disability in older persons: a systematic review. Maturitas. 2011;69:208–219. doi:10.1016/j.maturitas.2011.04.008 [PubMed] [Google Scholar]

73. Cooper R, Hardy R, Bann D, et al.; MRC National Survey of Health and Development Scientific and Data Collection Team Body mass index from age 15 years onwards and muscle mass, strength, and quality in early old age: findings from the MRC National Survey of Health and Development. J Gerontol A Biol Sci Med Sci. 2014;69:1253–1259. doi:10.1093/gerona/glu039 [PMC free article] [PubMed] [Google Scholar]

74. Koster A, Ding J, Stenholm S, et al.; Health ABC study Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults? J Gerontol A Biol Sci Med Sci. 2011;66:888–895. doi:10.1093/gerona/glr070 [PMC free article] [PubMed] [Google Scholar]

75. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11:693–700. doi:10.1097/MCO.0b013e328312c37d [PMC free article] [PubMed] [Google Scholar]

76. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89:81–88. [PubMed] [Google Scholar]

77. Aub JC. Clinical calorimetry. Arch Intern Med. 1917;XIX:823. [Google Scholar]

78. Black AE, Coward WA, Cole TJ, Prentice AM. Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr. 1996;50:72–92. [PubMed] [Google Scholar]

79. Manini TM. Energy expenditure and aging. Ageing Res Rev. 2010;9:1–11. doi:10.1016/j.arr.2009.08.002 [PMC free article] [PubMed] [Google Scholar]

80. Fleg JL, Morrell CH, Bos AG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112:674–682. doi:10.1161/CIRCULATIONAHA.105.545459 [PubMed] [Google Scholar]

81. Lawlor DA, Cooper AR, Bain C, et al. Associations of birth size and duration of breast feeding with cardiorespiratory fitness in childhood: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Eur J Epidemiol. 2008;23:411–422. doi:10.1007/s10654-008-9259-x [PubMed] [Google Scholar]

82. Salonen MK, Kajantie E, Osmond C, et al. Developmental origins of physical fitness: the Helsinki Birth Cohort Study. PLoS One. 2011;6:e22302 doi:10.1371/journal.pone.0022302 [PMC free article] [PubMed] [Google Scholar]

83. Schrack JA, Simonsick EM, Chaves PH, Ferrucci L. The role of energetic cost in the age-related slowing of gait speed. J Am Geriatr Soc. 2012;60:1811–1816. doi:10.1111/j.1532-5415.2012.04153.x [PMC free article] [PubMed] [Google Scholar]

84. Schrack JA, Simonsick EM, Ferrucci L. The energetic pathway to mobility loss: an emerging new framework for longitudinal studies on aging. J Am Geriatr Soc. 2010;58(suppl 2):S329–S336. doi:10.1111/j.1532-5415.2010.02913.x [PMC free article] [PubMed] [Google Scholar]

85. Schrack JA, Zipunnikov V, Simonsick EM, Studenski S, Ferrucci L. Rising energetic cost of walking predicts gait speed decline with aging. J Gerontol A Biol Sci Med Sci. 2016. doi:10.1093/gerona/glw002 [PMC free article] [PubMed] [Google Scholar]

86. McMillen IC, Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633. doi:10.1152/physrev.00053.2003 [PubMed] [Google Scholar]

87. Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav. 2011;59:279–289. doi:10.1016/j.yhbeh.2010.06.007 [PubMed] [Google Scholar]

88. Worthman CM, Kuzara J. Life history and the early origins of health differentials. Am J Hum Biol. 2005;17:95–112. doi:10.1002/ajhb.20096 [PubMed] [Google Scholar]

89. Mishra GD, Cooper R, Tom SE, Kuh D. Early life circumstances and their impact on menarche and menopause. Womens Health (Lond Engl). 2009;5:175–190. doi:10.2217/17455057.5.2.175 [PMC free article] [PubMed] [Google Scholar]

90. dos Santos Silva I, De Stavola BL, Mann V, Kuh D, Hardy R, Wadsworth ME. Prenatal factors, childhood growth trajectories and age at menarche. Int J Epidemiol. 2002;31:405–412. doi:10.1093/ije/31.2.405 [PubMed] [Google Scholar]

91. Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S. Age at menarche, age at menopause, height and obesity as risk factors for breast cancer: associations and interactions in an international case-control study. Int J Cancer. 1990;46:796–800. [PubMed] [Google Scholar]

92. Chen L, Li S, He C, Zhang C. Age at menarche and risk of gestational diabetes mellitus: a prospective cohort study among 27,482 women. Diabetes Care. 2016;39:469–471. doi:10.2337/dc15-2011 [PMC free article] [PubMed] [Google Scholar]

93. Gong TT, Wang YL, Ma XX. Age at menarche and endometrial cancer risk: a dose-response meta-analysis of prospective studies. Sci Rep. 2015;5:14051. [PMC free article] [PubMed] [Google Scholar]

94. Lim SW, Ahn JH, Lee JA, Kim DH, Seo JH, Lim JS. Early menarche is associated with metabolic syndrome and insulin resistance in premenopausal Korean women. Eur J Pediatr. 2016;175:97–104. doi:10.1007/s00431-015-2604-7 [PubMed] [Google Scholar]

95. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106:29–39. doi:10.1016/j.physbeh.2011.08.019 [PubMed] [Google Scholar]

96. Gardner MP, Lightman S, Sayer AA, et al.; Halcyon Study Team Dysregulation of the hypothalamic pituitary adrenal (HPA) axis and physical performance at older ages: an individual participant meta-analysis. Psychoneuroendocrinology. 2013;38:40–49. doi:10.1016/j.psyneuen.2012.04.016 [PMC free article] [PubMed] [Google Scholar]

97. Jones R, Hardy R, Sattar N, et al.; NSHD Scientific and Data Collection Teams Novel coronary heart disease risk factors at 60–64 years and life course socioeconomic position: the 1946 British birth cohort. Atherosclerosis. 2015;238:70–76. doi:10.1016/j.atherosclerosis.2014.11.011 [PMC free article] [PubMed] [Google Scholar]

98. Murray ET, Hardy R, Hughes A, et al. Overweight across the life course and adipokines, inflammatory and endothelial markers at age 60–64 years: evidence from the 1946 birth cohort. Int J Obes (Lond). 2015;39:1010–1018. doi:10.1038/ijo.2015.19 [PMC free article] [PubMed] [Google Scholar]

99. Li Q, Wang S, Milot E, et al. Homeostatic dysregulation proceeds in parallel in multiple physiological systems. Aging Cell. 2015;14:1103–1112. doi:10.1111/acel.12402 [PMC free article] [PubMed] [Google Scholar]

100. Maggio M, Lauretani F, De Vita F, et al. Multiple hormonal dysregulation as determinant of low physical performance and mobility in older persons. Curr Pharm Des. 2014;20:3119–3148. doi:10.2174/13816128113196660062 [PMC free article] [PubMed] [Google Scholar]

101. Morrisette-Thomas V, Cohen AA, Fülöp T, et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev. 2014;139:49–57. doi:10.1016/j.mad.2014.06.005 [PMC free article] [PubMed] [Google Scholar]

102. Barzilai N, Ferrucci L. Insulin resistance and aging: a cause or a protective response? J Gerontol A Biol Sci Med Sci. 2012;67:1329–1331. doi:10.1093/gerona/gls145 [PubMed] [Google Scholar]

103. Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2:819–829. doi:10.1016/S2213-8587(14)70034-8 [PMC free article] [PubMed] [Google Scholar]

104. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–2950. doi:10.2337/diabetes.51.10.2944 [PubMed] [Google Scholar]

105. Ferrucci L, Harris TB, Guralnik JM, et al. Serum IL-6 level and the development of disability in older persons. J Am Geriatr Soc. 1999;47:639–646. doi:10.1111/j.1532-5415.1999.tb01583.x [PubMed] [Google Scholar]

106. Ferrucci L, Penninx BW, Volpato S, et al. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J Am Geriatr Soc. 2002;50:1947–1954. doi:10.1046/j.1532-5415.2002.50605.x [PubMed] [Google Scholar]

107. Bandeen-Roche K, Walston JD, Huang Y, Semba RD, Ferrucci L. Measuring systemic inflammatory regulation in older adults: evidence and utility. Rejuvenation Res. 2009;12:403–410. doi:10.1089/rej.2009.0883 [PMC free article] [PubMed] [Google Scholar]

108. Rodier F, Coppé JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973–979. doi:10.1038/ncb1909 [PMC free article] [PubMed] [Google Scholar]

109. Semba RD, Bartali B, Zhou J, Blaum C, Ko CW, Fried LP. Low serum micronutrient concentrations predict frailty among older women living in the community. J Gerontol A Biol Sci Med Sci. 2006;61:594–599. doi:10.1093/gerona/61.6.594 [PubMed] [Google Scholar]

110. Semba RD, Lauretani F, Ferrucci L. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007;458:141–145. doi:10.1016/j.abb.2006.11.025 [PMC free article] [PubMed] [Google Scholar]

111. Bartali B, Semba RD, Frongillo EA, et al. Low micronutrient levels as a predictor of incident disability in older women. Arch Intern Med. 2006;166:2335–2340. doi:10.1001/archinte.166.21.2335 [PMC free article] [PubMed] [Google Scholar]

112. Bartali B, Frongillo EA, Guralnik JM, et al. Serum micronutrient concentrations and decline in physical function among older persons. JAMA. 2008;299:308–315. doi:10.1001/jama.299.3.308 [PMC free article] [PubMed] [Google Scholar]

113. Walhovd KB, Fjell AM, Brown TT, et al.; Pediatric Imaging, Neurocognition, and Genetics Study Long-term influence of normal variation in neonatal characteristics on human brain development. Proc Natl Acad Sci USA. 2012;109:20089–20094. doi:10.1073/pnas.1208180109 [PMC free article] [PubMed] [Google Scholar]

114. Douaud G, Groves AR, Tamnes CK, et al. A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci USA. 2014;111:17648–17653. doi:10.1073/pnas.1410378111 [PMC free article] [PubMed] [Google Scholar]

115. Gow AJ, Johnson W, Mishra G, Richards M, Kuh D, Deary IJ; HALCyon Study Team Is age kinder to the initially more able? Yes, and no. Intelligence. 2012;40:49–59. doi:10.1016/j.intell.2011.10.007 [PMC free article] [PubMed] [Google Scholar]

116. Cadar D, Stephan BC, Jagger C, et al. The role of cognitive reserve on terminal decline: a cross-cohort analysis from two European studies: OCTO-Twin, Sweden, and Newcastle 85+, UK. Int J Geriatr Psychiatry. 2015. doi:10.1002/gps.4366 [PMC free article] [PubMed] [Google Scholar]

117. Richards M, Shipley B, Fuhrer R, Wadsworth ME. Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. BMJ. 2004;328:552 doi:10.1136/bmj.37972.513819.EE [PMC free article] [PubMed] [Google Scholar]

118. Clouston SA, Kuh D, Herd P, Elliott J, Richards M, Hofer SM. Benefits of educational attainment on adult fluid cognition: international evidence from three birth cohorts. Int J Epidemiol. 2012;41:1729–1736. doi:10.1093/ije/dys148 [PMC free article] [PubMed] [Google Scholar]

119. Richards M, Deary IJ. A life course approach to cognitive capability. In: Kuh D, Cooper R, Hardy R, Richards M, Ben-Shlomo Y, eds. A Life Course Approach to Healthy Ageing. Oxford, UK: Oxford University Press; 2014:32–46. [Google Scholar]

120. Verdú E, Ceballos D, Vilches JJ, Navarro X. Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst. 2000;5:191–208. doi:10.1111/j.1529-8027.2000.00026.x [PubMed] [Google Scholar]

121. Ward RE, Boudreau RM, Caserotti P, et al.; Health, Aging and Body Composition Study Sensory and motor peripheral nerve function and incident mobility disability. J Am Geriatr Soc. 2014;62:2273–2279. doi:10.1111/jgs.13152 [PMC free article] [PubMed] [Google Scholar]

122. Lange-Maia BS, Newman AB, Cauley JA, et al.; Health, Aging and Body Composition Study Sensorimotor peripheral nerve function and the longitudinal relationship with endurance walking in the health, aging and body composition study. Arch Phys Med Rehabil. 2016;97:45–52. doi:10.1016/j.apmr.2015.08.423 [PMC free article] [PubMed] [Google Scholar]

123. Deshpande N, Metter EJ, Ferrucci L. Validity of clinically derived cumulative somatosensory impairment index. Arch Phys Med Rehabil. 2010;91:226–232. doi:10.1016/j.apmr.2009.10.006 [PMC free article] [PubMed] [Google Scholar]

124. Peters MJ, Joehanes R, Pilling LC, et al.; NABEC/UKBEC Consortium The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6:8570 doi:10.1038/ncomms9570 [PMC free article] [PubMed] [Google Scholar]

125. Metter EJ, Conwit R, Metter B, Pacheco T, Tobin J. The relationship of peripheral motor nerve conduction velocity to age-associated loss of grip strength. Aging (Milano). 1998;10:471–478. [PubMed] [Google Scholar]

126. Ferrucci L, Bandinelli S, Cavazzini C, et al. Neurological examination findings to predict limitations in mobility and falls in older persons without a history of neurological disease. Am J Med. 2004;116:807–815. doi:10.1016/j.amjmed.2004.01.010 [PubMed] [Google Scholar]

127. Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci. 2014;6:208 doi:10.3389/fnagi.2014.00208 [PMC free article] [PubMed] [Google Scholar]

128. Rosso AL, Studenski SA, Chen WG, et al. Aging, the central nervous system, and mobility. J Gerontol A Biol Sci Med Sci. 2013;68:1379–1386. doi:10.1093/gerona/glt089 [PMC free article] [PubMed] [Google Scholar]

129. Brach JS, Studenski SA, Perera S, VanSwearingen JM, Newman AB. Gait variability and the risk of incident mobility disability in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2007;62:983–988. doi:10.1093/gerona/62.9.983 [PMC free article] [PubMed] [Google Scholar]

130. Tabbarah M, Crimmins EM, Seeman TE. The relationship between cognitive and physical performance: MacArthur studies of successful aging. J Gerontol A Biol Sci Med Sci. 2002;57:M228–M235. doi:10.1093/gerona/57.4.M228 [PubMed] [Google Scholar]

131. Rantanen T, Guralnik JM, Ferrucci L, Leveille S, Fried LP. Coimpairments: strength and balance as predictors of severe walking disability. J Gerontol A Biol Sci Med Sci. 1999;54:M172–M176. doi:10.1093/gerona/54.4.M172 [PubMed] [Google Scholar]

132. Stenholm S, Shardell M, Bandinelli S, Guralnik JM, Ferrucci L. Physiological factors contributing to mobility loss over 9 years of follow-up—results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2015;70:591–597. doi:10.1093/gerona/glv004 [PMC free article] [PubMed] [Google Scholar]

133. Colbert LH, Visser M, Simonsick EM, et al. Physical activity, exercise, and inflammatory markers in older adults: findings from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2004;52:1098–1104. doi:10.1111/j.1532-5415.2004.52307.x [PubMed] [Google Scholar]

134. Bandinelli S, Pozzi M, Lauretani F, et al. Adding challenge to performance-based tests of walking: the Walking InCHIANTI Toolkit (WIT). Am J Phys Med Rehabil. 2006;85:986–991. doi:10.1097/01.phm.0000233210.69400.d4 [PMC free article] [PubMed] [Google Scholar]

135. Ferrucci L, Bandinelli S, Benvenuti E, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48:1618–1625. doi:10.1111/j.1532-5415.2000.tb03873.x [PubMed] [Google Scholar]


Page 2

Which patient is most at risk of developing permanently impaired mobility group of answer choices?

Average (and standard errors) annual rates of change of walking speed in men and women participants of the InCHIANTI study according to 5-year age groups at study entry. To address selective attrition, rates of change were estimated by mixed effect models with inverse probability weighting. Three different walking tasks were considered: 4-m walk at usual and fast speed and 400-m walk at fast speed. Rates of change were estimated using data from baseline and 3-, 6-, 9-, and 14-year follow-up. Rates are plotted at the lower age for the interval (eg, 20 is for participants who were 20–25 years old at study entry). Specific values plotted in this figure are reported in Supplementary Tables 1a and b. Description of the performance measures assessed in InCHIANTI and a global description of the InCHIANTI study have been reported elsewhere (134,135).

  • Which patient is most at risk of developing permanently impaired mobility group of answer choices?
  • Which patient is most at risk of developing permanently impaired mobility group of answer choices?
  • Which patient is most at risk of developing permanently impaired mobility group of answer choices?
  • Which patient is most at risk of developing permanently impaired mobility group of answer choices?

Click on the image to see a larger version.