Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Progressão aritmética (PA) é uma sequência numérica que possui a seguinte definição: a diferença entre dois termos consecutivos é sempre igual a uma constante, geralmente chamada de razão da PA. É possível, a partir apenas do primeiro termo e da razão de uma PA, encontrar o valor de qualquer termo. Esse cálculo depende de sua posição na sequência numérica e pode ser feito por meio da fórmula do termo geral de uma PA, discutida mais adiante neste artigo. Antes, porém, é importante conhecer bem o conceito que define uma PA.

Razão de uma PA

Uma sequência numérica é um conjunto em que os números estão em alguma ordem. No caso da PA, o que determina essa ordem é a razão. A sequência numérica abaixo é uma PA. Observe:

(1, 2, 3, 4, 5, 6, 7, 8, 9, …)

A diferença entre dois termos consecutivos quaisquer (razão) é 1. As reticências indicam que a lista de números continua, ou seja, o próximo termo sempre será igual ao anterior somado com a razão 1.

Veja agora a sequência abaixo:

(1, 2, 3, 4, 6, 7, 8, 9, 11, …)

Esse exemplo não é uma PA, pois a diferença entre o primeiro e o segundo termo é igual a 1, mas a diferença entre o quinto e o quarto termo é igual a 2.

Assim, razão é o número a que cada termo deve ser adicionado para obter o próximo.

Termo geral de uma PA

A partir da conclusão anterior, podemos começar a pensar em uma maneira de obter qualquer termo de uma PA.

Considere que primeiro termo de uma PA é a1 e os seguintes são a2, a3, …

Antes de mais nada, observe que as duas progressões aritméticas a seguir possuem a mesma razão:

A = (1, 5, 9, 13, …)

B = (2, 6, 10, 14, …)

Entretanto, o quarto termo dessas PAs é diferente, pois a4 = 13 e b4 = 14. Isso acontece porque o primeiro termo dessas progressões é diferente. Dessa maneira, o primeiro termo influencia o valor do termo que queremos encontrar, que será representado por an.

Sabendo disso, escreveremos alguns termos da primeira PA em função do primeiro. Observe:

a1 = 1

a2 = 5 = 1 + 4 = a1 + r

a3 = 9 = 1 + 8 = a1 + 2r

a4 = 13 = 1 + 12 = a1 + 3r

Observe apenas a parte inicial e final das igualdades:

a1 = 1

a2 = a1 + r

a3 = a1 + 2r

a4 = a1 + 3r

O número que multiplica a razão sempre é uma unidade menor que a posição do termo que estamos calculando. Por isso, podemos escrever as seguintes expressões:

a1 = 1

a2 = a1 + r = a1 + (2 – 1)r

a3 = a1 + 2r = a1 + (3 – 1)r

a4 = a1 + 3r = a1 + (4 – 1)r

Dessa maneira, podermos imaginar que um termo qualquer (an) é obtido pela soma do primeiro termo (a1) com o produto entre n – 1 e r. Assim, a fórmula do termo geral de uma PA é a seguinte:

an = a1 + (n – 1)r

Testando a fórmula

Note que essa fórmula necessita de três informações para ser utilizada: a posição do termo que se quer descobrir, representada pela letra n; o primeiro termo da PA e a sua razão. Observe o exemplo a seguir, que será resolvido de duas maneiras diferentes.

Qual o décimo termo da PA (2, 4, 6, …)?

Para encontrar o décimo termo dessa PA, basta continuar somando a razão ao último termo até encontrá-lo. A PA obtida será: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20...

Utilizando a fórmula do termo geral de uma PA, teremos:

an = a1 + (n – 1)r

a10 = 2 + (10 – 1)·2

a10 = 2 + (9)·2

a10 = 2 + 18

a10 = 20

Exemplo:

Calcule o 500º termo da PA (2, 5, …).

O primeiro termo dessa PA é 2, e a razão é 3. Na fórmula do termo geral, teremos:

an = a1 + (n – 1)r

a500 = 2 + (500 – 1)·3

a500 = 2 + (499)·3

a500 = 2 + 1497

a500 = 1499

A progressão aritmética (PA) é uma sequência numérica que utilizamos para descrever o comportamento de certos fenômenos na matemática. Em uma PA, o crescimento ou decrescimento é sempre constante, isto é, de um termo para o outro, a diferença será sempre a mesma, e essa diferença é conhecida como razão.

Como consequência do comportamento previsível de uma progressão, é possível descrevê-la a partir de uma fórmula conhecida como termo geral. Por esse mesmo motivo, é possível também calcular a soma dos termos de uma PA utilizando uma fórmula específica.

Leia também: Progressão geométrica – como calcular?

Tópicos deste artigo

O que é uma PA?

Entendendo que uma PA é uma sequência de termos em que a diferença entre um termo e o seu anterior é sempre constante, para descrever essa progressão a partir de uma fórmula, precisamos encontrar o termo inicial, ou seja, o primeiro termo de uma progressão, e a sua razão, que é essa diferença constante entre os termos.

De modo geral, a PA é escrita da seguinte forma:

(a1, a2,a3, a4,a5, a6,a7, a8)

O primeiro termo é o a1 e, a partir dele, ao somar a razão r, vamos encontrar o termos sucessor.

a1 + r = a2
a2 + r = a3
a3 + r = a4

...

Logo, para escrever a progressão aritmética, precisamos saber quem é o seu primeiro termo e qual a sua razão.

Exemplo:

Vamos escrever os seis primeiros termos de uma PA sabendo que seu primeiro termo é 4 e sua razão é igual a 2. Conhecendo a1 =4 e r = 2, concluímos que essa progressão começa em 4 e vai aumentando de 2 em 2. Sendo assim, podemos descrever os seus termos.

a1 = 4

a2 = 4+ 2 = 6

a3 = 6 + 2 = 8

a4 = 8 + 2 = 10

a5= 10 + 2 = 12

a6 = 12 + 2 =14

Essa PA é igual a (4,6,8,10,12,14 …).

Não pare agora... Tem mais depois da publicidade ;)

Termo geral de uma PA

Descrever a PA a partir de uma fórmula facilita que encontremos qualquer um dos seus termos. Para encontrar um termo qualquer de uma PA, utilizamos a seguinte fórmula:


N→ é a posição do termo;

a1→ é o primeiro termo;

r → razão.

Exemplo:

Encontre o termo geral da PA (1,5,9,13,…) e o 5º, 10º e 23º termo.

1º passo: encontrar a razão.

Para encontrar a razão, basta calcular a diferença entre dois termos consecutivos: 5 – 1 = 4; então, nesse caso, r = 4 .

2º passo: encontrar o termo geral.

Como sabemos que a1= 1 e r = 4, vamos substituir na fórmula.

an=a1 + r (n - 1)

an=1 + 4 (n - 1)

an=1 + 4n - 4  

an= 4n – 3 → termo geral da PA

3º passo: conhecendo o termo geral, vamos calcular o 5º, 10º e 23º termo.

5º termo → n = 5
an=4n – 3
a5=4·5 – 3
a5=20 – 3
a5=17

10º termo → n = 10
an=4n – 3
a10=4·10 – 3
a10=40 – 3
a10=37

23º termo → n = 23
an=4n – 3
a23=4·23 – 3
a23=92 – 3
a23=89

Tipos de progressões aritméticas

Existem três possibilidades para uma PA. Ela pode ser crescente, decrescente ou constante.

Como o nome sugere, uma progressão aritmética é crescente quando, à medida que os termos vão aumentando, o valor deles também aumenta, ou seja, o segundo termo é maior que o primeiro, o terceiro é maior que o segundo e assim sucessivamente.

a1 < a2 < a3 < a4 < …. n

Para que isso aconteça, a razão precisa ser positiva, ou seja, uma PA é crescente se r > 0.

Exemplos:

(2,3,4,5,6,7,8,9 …)
(0,5,10,15,20,25...)

Como o nome sugere, uma progressão aritmética é decrescente quando, à medida que os termos vão aumentando, o valor deles vai diminuindo, ou seja, o segundo termo é menor que o primeiro, o terceiro é menor que o segundo e assim sucessivamente.

a1 > a2 > a3 > a4 > …. >an

Para que isso aconteça, a razão precisa ser negativa, ou seja, uma PA é crescente se r < 0.

Exemplos:

(10,9,8,7,6,5,4,3,2, …)
(0, -5, -10, -15, -20, …)

Uma progressão aritmética é constante quando, à medida que os termos vão aumentando, o valor continua o mesmo, ou seja, o primeiro termo é igual ao segundo, que é igual ao terceiro e assim sucessivamente.

a1 = a2 = a3 = a4 = …. =an

Para que uma PA seja constante, a razão precisa ser igual a zero, ou seja, r = 0.

Exemplos:

(1,1,1,1,1,1,1….)
(-2, -2 -2, -2, …)

Veja também: Produto dos termos de uma PG – qual é a fórmula?

Propriedades de uma PA

Dado um termo qualquer de uma PA, a média aritmética entre seu sucessor e antecessor é igual a esse termo.

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Exemplo:

Considere a progressão (-1, 2 , 5, 8, 11) e o termo 8. A média entre 11 e 5 é igual a 8, ou seja, a soma do sucessor com o antecessor de um número na PA sempre é igual a esse número.

A soma de termos equidistantes é sempre igual.

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Exemplo:

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Soma dos termos de uma PA

Suponha que queiramos somar os seis termos da PA mostrada anteriormente: (16,13,10,7,4,1). Podemos simplesmente somar os seus termos – nesse caso em que há poucos termos, é possível –, mas se for uma sequência maior, convém utilizar a propriedade. Sabemos que a soma de termos equidistantes é sempre igual, como vimos na propriedade, então, se realizarmos essa soma uma vez e multiplicarmos pela metade da quantidade de termos, teremos a soma dos seis primeiros termos da PA.

Note que, no exemplo, estaríamos calculando a soma do primeiro com o último, que é igual a 17, multiplicada pela metade da quantidade de termos, ou seja, 17 vezes 3, que é igual a 51.

A fórmula da soma dos termos de uma PA foi desenvolvida pelo matemático Gauss, que percebeu essa simetria nas progressões aritméticas. A fórmula é escrita da seguinte forma:

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Sn → soma dos n elementos

a1 → primeiro termo

an → último termo

n → quantidade de termos

Exemplo:

Calcule a soma dos números ímpares de 1 até 2000.

Resolução:

Sabemos que essa sequência é uma PA (1,3,5, …. 1997, 1999). Realizar a soma seria bastante trabalhoso, logo a fórmula é bastante conveniente. De 1 até 2000, metade dos números são ímpares, logo há 1000 números ímpares.

Dados:

n→ 1000

a1 → 1

an → 1999

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Acesse também: Soma de uma PG finita – como fazer?

Interpolação de meios aritméticos

Conhecendo dois termos não consecutivos de uma progressão aritmética, é possível encontrar todos os termos que estão entre esses dois números, o que conhecemos como interpolação de meios aritméticos.

Exemplo:

Vamos interpolar 5 meios aritméticos entre 13 e 55. Isso significa que há 5 números entre 13 e 55 e que eles formam uma progressão.

(13, ___,___,___,___,___, 55).

Para encontrar esses números, é necessário encontrar a razão. Conhecemos o primeiro termo (a1 = 13) e também o 7º termo (a7= 55), mas sabemos que:

an = a1 + r ·(n – 1 )

Quando n = 7 → an= 55. Também conhecemos o valor de a1=13. Assim, substituindo na fórmula, temos que:

55 = 13 + r ·( 7 – 1 )

55 = 13 + 6r

55 – 13 = 6r

42 = 6r

r = 42:6

r = 7.

Conhecendo a razão, podemos encontrar os termos que estão entre 13 e 55.

13 + 7 = 20

21 + 7 = 27

28 + 7 = 34

35 + 7 = 41

41 + 7 = 49

(13, 20, 27, 34, 41, 49, 55)

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a
A sequência de 1 até 10 é uma progressão aritmética de razão 1.

Questão 1 - (Enem 2012) - Jogar baralho é uma atividade que estimula o raciocínio. Um jogo tradicional é a Paciência, que utiliza 52 cartas. Inicialmente são formadas sete colunas com as cartas. A primeira coluna tem uma carta, a segunda tem duas cartas, a terceira tem três cartas, a quarta tem quatro cartas, e assim sucessivamente até a sétima coluna, a qual tem sete cartas, e o que sobra forma o monte, que são as cartas não utilizadas nas colunas.

A quantidade de cartas que forma o monte é:

A) 21. B) 24. C) 26. D) 28.

E) 31.

Resolução

Alternativa B.

Primeiro vamos calcular o total de cartas que foram usadas. Estamos trabalhando com uma PA cujo primeiro termo é 1 e a razão também é 1. Então, calculando a soma das 7 fileiras, o último termo é 7 e o valor de n também é 7.

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Sabendo que o total de cartas usadas foram 28 e que há 52 cartas, o monte é formado por:

52 – 28 = 24 cartas

Questão 2 - (Enem 2018) A prefeitura de um pequeno município do interior decide colocar postes para iluminação ao longo de uma estrada retilínea que se inicia em uma praça central e termina numa fazenda na zona rural. Como a praça já possui iluminação, o primeiro poste será colocado a 80 metros da praça, o segundo, a 100 metros, o terceiro, a 120 metros, e assim sucessivamente, mantendo-se sempre uma distância de 20 metros entre os postes, até que o último poste seja colocado a uma distância de 1.380 metros da praça.

Se a prefeitura pode pagar, no máximo, R$ 8.000,00 por poste colocado, o maior valor que poderá gastar com a colocação desses postes é:

A) R$512 000,00. B) R$520 000,00. C) R$528 000,00. D) R$552 000,00.

E) R$584 000,00.

Resolução

Alternativa C.

Sabemos que serão colocados postes de 20 em 20 metros, ou seja, r = 20, e que o primeiro termo dessa PA é 80. Além disso, sabemos que o último termo é 1380, porém, não sabemos quantos termos existem entre 80 e 1380. Para calcular essa quantidade n de termos, vamos utilizar a fórmula do termo geral.

Dados: an = 1380; a1=80; e r = 20.

an=a1 + r·(n-1)

Temos uma progressão aritmética de 20 termos onde o 1o termo é igual a 5 o décimo termo é igual a

Serão colocados 660 postes. Se cada um custará no máximo R$ 8.000, o maior valor que poderá ser gasto com a colocação desses postes é:

66· 8 000 = 528 000

Por Raul Rodrigues de Oliveira