Which method of drug administration does the nurse State is commonly used in toddlers when the child has poor intravenous IV access?

A central line (or central venous catheter) is like an intravenous (IV) line. But it is much longer than a regular IV and goes all the way up to a vein near the heart or just inside the heart.

A patient can get medicine, fluids, blood, or nutrition through a central line. It also can be used to draw blood.

What Are the Types of Central Lines?

Commonly used central lines include:

When Are Central Lines Used Instead of Regular IV Lines?

Doctors might use a central line instead of a regular IV line because:

  • It can stay in place longer (up to a year or even more).
  • It makes it easier to draw blood.
  • Patients can get large amounts of fluids or medicines (like chemotherapy) that might not go through regular IVs.

Doctors may place a central line for someone who:

  • has a serious infection so they can get IV for a few weeks
  • has cancer so they can get chemotherapy and blood tests through the line
  • needs IV nutrition
  • will need many blood transfusions

Which method of drug administration does the nurse State is commonly used in toddlers when the child has poor intravenous IV access?

Most of the time, central lines do not cause any problems. If problems do happen, it is usually because the line gets infected or stops working. Very rarely, a central line can cause a blood clot. Doctors review the risks with families before placing the central line.

How Can Parents Help?

If your child has a central line, you can help care for it to prevent infection and keep it working well. It's normal to feel a little bit nervous caring for the central line at first, but soon you'll feel more comfortable. You'll get supplies to use at home, and a visiting nurse may come to help you when you first get home.

Before your child goes home from having the central line placed, ask your health care team:

  • how often to change the dressing
  • when and how to flush the line
  • what to do if the line gets blocked or comes out
  • how to give medicines through the central line (if you will be giving medicines at home)
  • if the line has caps, how often to change them
  • which physical activities are OK for your child (most kids need to avoid rough play and contact sports)
  • if any special care is needed to protect the central line while your child bathes
  • what signs of infection to watch for

Tell your child's teachers, school nurse, counselor, and physical education teacher about the central line. They can make sure your child avoids any activities that may damage the line, and help support your child during treatment.

  1. Khatri N, Misra A. Applications of polymers in parenteral drug delivery. In: Misra A, Shahiwala A, editors. Applications of polymers in drug delivery. Shrewsbury: Smithers Rapra; 2014.

    Google Scholar 

  2. Development of paediatric medicines: points to consider in formulation annex 5. WHO Technical Report Series. Geneva: World Health Organization; 2012. p. 1–29.

  3. Pein M, Preis M, Eckert C, Kiene FE. Taste-masking assessment of solid oral dosage forms—a critical review. Int J Pharm. 2014;465(1–2):239–54.

    Article  CAS  PubMed  Google Scholar 

  4. Maniruzzaman M, Boateng JS, Chowdhry BZ, Snowden MJ, Douroumis D. A review on the taste masking of bitter APIs: hot-melt extrusion (HME) evaluation. Drug Dev Ind Pharm. 2014;40(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  5. Papai K, Budai M, Ludanyi K, Antal I, Klebovich I. In vitro food–drug interaction study: which milk component has a decreasing effect on the bioavailability of ciprofloxacin? J Pharm Biomed Anal. 2010;52(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  6. Knippa A. PN nursing care of children. Stilwell (KS): Assessment Technologies Institute; 2011.

    Google Scholar 

  7. Klingmann V. Acceptability testing of minitablets from neonates to pre-school children. 6th European Paediatric Formulation Initiative Conference; 17–18 Sep 2014; Athens.

  8. Avery GB, Randolph JG, Weaver T. Gastric acidity in the first day of life. Pediatrics. 1966;37(6):1005–7.

    CAS  PubMed  Google Scholar 

  9. Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–84.

    PubMed Central  PubMed  Google Scholar 

  10. Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55(5):667–86.

    Article  CAS  PubMed  Google Scholar 

  11. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  CAS  PubMed  Google Scholar 

  12. Bartelink IH, Rademaker CM, Schobben AF, van den Anker JN. Guidelines on paediatric dosing on the basis of developmental physiology and pharmacokinetic considerations. Clin Pharmacokinet. 2006;45(11):1077–97.

    Article  CAS  PubMed  Google Scholar 

  13. Marsot A, Brevaut-Malaty V, Vialet R, Boulamery A, Bruguerolle B, Simon N. Pharmacokinetics and absolute bioavailability of phenobarbital in neonates and young infants: a population pharmacokinetic modelling approach. Fundam Clin Pharmacol. 2014;28(4):465–71.

    Article  CAS  PubMed  Google Scholar 

  14. Silverio J, Poole JW. Serum concentrations of ampicillin in newborn infants after oral administration. Pediatrics. 1973;51(3):578–80.

    CAS  PubMed  Google Scholar 

  15. Koren G. Therapeutic drug monitoring principles in the neonate. National Academy of Clinical Biochemistry. Clin Chem. 1997;43(1):222–7.

    CAS  PubMed  Google Scholar 

  16. Carlos MA, Babyn PS, Marcon MA, Moore AM. Changes in gastric emptying in early postnatal life. J Pediatr. 1997;130(6):931–7.

    Article  CAS  PubMed  Google Scholar 

  17. Czinn SJ, Blanchard S. Gastroesophageal reflux disease in neonates and infants: when and how to treat. Paediatr Drugs. 2013;15(1):19–27.

    Article  PubMed  Google Scholar 

  18. Hillemeier AC, Lange R, McCallum R, Seashore J, Gryboski J. Delayed gastric emptying in infants with gastroesophageal reflux. J Pediatr. 1981;98(2):190–3.

    Article  CAS  PubMed  Google Scholar 

  19. Martinussen M, Brubakk AM, Linker DT, Vik T, Yao AC. Mesenteric blood flow velocity and its relation to circulatory adaptation during the first week of life in healthy term infants. Pediatr Res. 1994;36(3):334–9.

    Article  CAS  PubMed  Google Scholar 

  20. Martinussen M, Brubakk AM, Vik T, Yao AC. Mesenteric blood flow velocity and its relation to transitional circulatory adaptation in appropriate for gestational age preterm infants. Pediatr Res. 1996;39(2):275–80.

    Article  CAS  PubMed  Google Scholar 

  21. Nankervis CA, Giannone PJ, Reber KM. The neonatal intestinal vasculature: contributing factors to necrotizing enterocolitis. Semin Perinatol. 2008;32(2):83–91.

    Article  PubMed  Google Scholar 

  22. Reber KM, Mager GM, Miller CE, Nowicki PT. Relationship between flow rate and NO production in postnatal mesenteric arteries. Am J Physiol Gastrointest Liver Physiol. 2001;280(1):G43–50.

    CAS  PubMed  Google Scholar 

  23. Nankervis CA, Nowicki PT. Role of nitric oxide in regulation of vascular resistance in postnatal intestine. Am J Physiol. 1995;268(6 Pt 1):G949–58.

    CAS  PubMed  Google Scholar 

  24. Reed MD. The ontogeny of drug disposition: focus on drug absorption, distribution, and excretion. Drug Inf J. 1996;30:1129–34.

    Google Scholar 

  25. Shankaran S, Kauffman RE. Use of chloramphenicol palmitate in neonates. J Pediatr. 1984;105(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  26. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.

    Article  CAS  PubMed  Google Scholar 

  27. Hill JM, Maloney A, Stephens K, Adrezin RS, Eisenfeld L. Stethoscope for monitoring neonatal abdominal sounds. Int J Mod Eng. 2008;9(1):5.

    Google Scholar 

  28. Dumas J, Hill KM, Adrezin RS, et al. Feasibility of an electronic stethoscope system for monitoring neonatal bowel sounds. Conn Med. 2013;77(8):467–71.

    PubMed  Google Scholar 

  29. van Kalken CK, Giaccone G, van der Valk P, et al. Multidrug resistance gene (P-glycoprotein) expression in the human fetus. Am J Pathol. 1992;141(5):1063–72.

    PubMed Central  PubMed  Google Scholar 

  30. Boucher FD, Modlin JF, Weller S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr. 1993;122(1):137–44.

    Article  CAS  PubMed  Google Scholar 

  31. Capparelli EV, Mirochnick M, Dankner WM, et al. Pharmacokinetics and tolerance of zidovudine in preterm infants. J Pediatr. 2003;142(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  32. Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther. 1995;58(5):492–7.

    Article  CAS  PubMed  Google Scholar 

  33. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther. 1996;60(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  34. Ince I, Knibbe CA, Danhof M, de Wildt SN. Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations. Clin Pharmacokinet. 2013;52(5):333–45.

    Article  CAS  PubMed  Google Scholar 

  35. de Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN. Pharmacokinetics and metabolism of oral midazolam in preterm infants. Br J Clin Pharmacol. 2002;53(4):390–2.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Pacifici GM. Clinical pharmacology of midazolam in neonates and children: effect of disease-a review. Int J Pediatr. 2014;2014:309342.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gritz EC, Bhandari V. The human neonatal gut microbiome: a brief review. Front Pediatr. 2015;3:17.

    PubMed Central  PubMed  Google Scholar 

  38. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.

    Article  PubMed  CAS  Google Scholar 

  39. Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  40. Scholtens PA, Oozeer R, Martin R, Amor KB, Knol J. The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol. 2012;3:425–47.

    Article  CAS  PubMed  Google Scholar 

  41. Stewart CJ, Marrs EC, Nelson A, et al. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PLoS One. 2013;8(8):e73465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Peppercorn MA, Goldman P. The role of intestinal bacteria in the metabolism of salicylazosulfapyridine. J Pharmacol Exp Ther. 1972;181(3):555–62.

    CAS  PubMed  Google Scholar 

  43. Saha JR, Butler VP Jr, Neu HC, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983;220(4594):325–7.

    Article  CAS  PubMed  Google Scholar 

  44. Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR. Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med. 1981;305(14):789–94.

    Article  CAS  PubMed  Google Scholar 

  45. Carmody RN, Turnbaugh PJ. Host–microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest. 2014;124(10):4173–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Broussard L. Small size, big risk: preventing neonatal and pediatric medication errors. Nurs Womens Health. 2010;14(5):405–8.

    Article  PubMed  Google Scholar 

  47. D’Antonio YC, Cohen MR. Pediatric medication errors. In: Cohen MR, editor. Medication errors: causes, prevention, and risk management. Sudbury (MA): Jones and Bartlett Publishers, Inc.; 1999.

    Google Scholar 

  48. Lass J, Naelapaa K, Shah U, et al. Hospitalised neonates in Estonia commonly receive potentially harmful excipients. BMC Pediatr. 2012;12:136.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Allegaert K, Vanhaesebrouck S, Kulo A, et al. Prospective assessment of short-term propylene glycol tolerance in neonates. Arch Dis Child. 2010;95(12):1054–8.

    Article  PubMed  Google Scholar 

  50. Salunke S, Brandys B, Giacoia G, Tuleu C. The STEP (Safety and Toxicity of Excipients for Paediatrics) database: part 2—the pilot version. Int J Pharm. 2013;457(1):310–22.

    Article  CAS  PubMed  Google Scholar 

  51. Turner MA, Duncan J, Shah U, et al. European study of neonatal exposure to excipients: an update. Int J Pharm. 2013;457(1):357–8.

    Article  CAS  PubMed  Google Scholar 

  52. Stiers JL, Ward RM. Newborns, one of the last therapeutic orphans to be adopted. JAMA Pediatr. 2014;168(2):106–8.

    Article  PubMed  Google Scholar 

  53. Usher R, Shephard M, Lind J. The blood volume of the newborn infant and placental transfusion. Acta Paediatr. 1963;52:497–512.

    Article  CAS  PubMed  Google Scholar 

  54. Sherwin CM, Medlicott NJ, Reith DM, Broadbent RS. Intravenous drug delivery in neonates: lessons learnt. Arch Dis Child. 2014;99(6):590–4.

    Article  PubMed  Google Scholar 

  55. Sherwin CM, McCaffrey F, Broadbent RS, Reith DM, Medlicott NJ. Discrepancies between predicted and observed rates of intravenous gentamicin delivery for neonates. J Pharm Pharmacol. 2009;61(4):465–71.

    Article  CAS  PubMed  Google Scholar 

  56. Medlicott NJ, Reith DM, McCaffrey F, Krittaphol W, Broadbent RS. Delayed delivery of intravenous gentamicin in neonates: impact of infusion variables. J Pharm Pharmacol. 2013;65(3):370–8.

    Article  CAS  PubMed  Google Scholar 

  57. Colacchio K, Deng Y, Northrup V, Bizzarro MJ. Complications associated with central and non-central venous catheters in a neonatal intensive care unit. J Perinatol. 2012;32(12):941–6.

    Article  CAS  PubMed  Google Scholar 

  58. Katheria AC, Fleming SE, Kim JH. A randomized controlled trial of ultrasound-guided peripherally inserted central catheters compared with standard radiograph in neonates. J Perinatol. 2013;33(10):791–4.

    Article  CAS  PubMed  Google Scholar 

  59. Panagiotounakou P, Antonogeorgos G, Gounari E, Papadakis S, Labadaridis J, Gounaris AK. Peripherally inserted central venous catheters: frequency of complications in premature newborn depends on the insertion site. J Perinatol. 2014;34(6):461–3.

    Article  CAS  PubMed  Google Scholar 

  60. Bradley JS, Wassel RT, Lee L, Nambiar S. Intravenous ceftriaxone and calcium in the neonate: assessing the risk for cardiopulmonary adverse events. Pediatrics. 2009;123(4):e609–13.

    Article  PubMed  Google Scholar 

  61. Evans C, Dixon A. Intravenous therapy: practice issues. Infant. 2006;2(4):133–6.

    Google Scholar 

  62. Robinson CA, Sawyer JE. Y-site compatibility of medications with parenteral nutrition. J Pediatr Pharmacol Ther. 2009;14(1):48–56.

    PubMed Central  PubMed  Google Scholar 

  63. Kenner C, Lott JW. Comprehensive neonatal care: an interdisciplinary approach. 4th ed. St. Louis (MO): Elsevier Health Sciences; 2007.

    Google Scholar 

  64. Jew RK, Owen D, Kaufman D, Balmer D. Osmolality of commonly used medications and formulas in the neonatal intensive care unit. Nutr Clin Pract. 1997;12(4):158–63.

    Article  Google Scholar 

  65. Alade SL, Brown RE, Paquet A Jr. Polysorbate 80 and E-Ferol toxicity. Pediatrics. 1986;77(4):593–7.

    CAS  PubMed  Google Scholar 

  66. Gershanik J, Boecler B, Ensley H, McCloskey S, George W. The gasping syndrome and benzyl alcohol poisoning. N Engl J Med. 1982;307(22):1384–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ward RM, Kern SE. Clinical trials in neonates: a therapeutic imperative. Clin Pharmacol Ther. 2009;86(6):585–7.

    Article  CAS  PubMed  Google Scholar 

  68. Uppal N, Yasseen B, Seto W, Parshuram CS. Drug formulations that require less than 0.1 mL of stock solution to prepare doses for infants and children. CMAJ. 2011;183(4):E246–8.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Strolin Benedetti M, Baltes EL. Drug metabolism and disposition in children. Fundam Clin Pharmacol. 2003;17(3):281–99.

    Article  CAS  PubMed  Google Scholar 

  70. National Center for Immunization and Respiratory Diseases. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2011;60(RR2):1–64.

    Google Scholar 

  71. Khambalia AZ, Roberts CL, Bowen JR, Nassar N. Maternal and infant characteristics by mode of vitamin K prophylaxis administration. J Paediatr Child Health. 2012;48(8):665–8.

    Article  PubMed  Google Scholar 

  72. Ipema HJ. Use of oral vitamin K for prevention of late vitamin k deficiency bleeding in neonates when injectable vitamin K is not available. Ann Pharmacother. 2012;46(6):879–83.

    Article  PubMed  CAS  Google Scholar 

  73. Bellieni CV, Aloisi AM, Ceccarelli D, et al. Intramuscular injections in newborns: analgesic treatment and sex-linked response. J Matern Fetal Neonatal Med. 2013;26(4):419–22.

    Article  CAS  PubMed  Google Scholar 

  74. Patel IH, Weinfeld RE, Konikoff J, Parsonnet M. Pharmacokinetics and tolerance of ceftriaxone in humans after single-dose intramuscular administration in water and lidocaine diluents. Antimicrob Agents Chemother. 1982;21(6):957–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Powell KR, Mawhorter SD. Outpatient treatment of serious infections in infants and children with ceftriaxone. J Pediatr. 1987;110(6):898–901.

    Article  CAS  PubMed  Google Scholar 

  76. Shah VS, Taddio A, Hancock R, Shah P, Ohlsson A. Topical amethocaine gel 4% for intramuscular injection in term neonates: a double-blind, placebo-controlled, randomized trial. Clin Ther. 2008;30(1):166–74.

    Article  CAS  PubMed  Google Scholar 

  77. Liaw JJ, Zeng WP, Yang L, Yuh YS, Yin T, Yang MH. Nonnutritive sucking and oral sucrose relieve neonatal pain during intramuscular injection of hepatitis vaccine. J Pain Symptom Manag. 2011;42(6):918–30.

    Article  CAS  Google Scholar 

  78. Hensel D, Morson GL, Preuss EA. Best practices in newborn injections. MCN Am J Matern Child Nurs. 2013;38(3):163–7 (quiz 168–169).

    Article  PubMed  Google Scholar 

  79. Ohls RK, Ehrenkranz RA, Wright LL, et al. Effects of early erythropoietin therapy on the transfusion requirements of preterm infants below 1250 grams birth weight: a multicenter, randomized, controlled trial. Pediatrics. 2001;108(4):934–42.

    Article  CAS  PubMed  Google Scholar 

  80. Costa S, Romagnoli C, Zuppa AA, et al. How to administrate erythropoietin, intravenous or subcutaneous? Acta Paediatr. 2013;102(6):579–83.

    Article  CAS  PubMed  Google Scholar 

  81. Ghadially R, Shear NH. Topical therapy and percutaneous absorption. In: Fletcher J, editor. Pediatric pharmacology: therapeutic principles in practice. 2nd ed. Philadelphia: W.B. Saunders Company; 1992. p. 72–7.

    Google Scholar 

  82. Choonara I. Percutaneous drug absorption and administration. Arch Dis Child. 1994;71(2):F73–4.

    Article  CAS  PubMed  Google Scholar 

  83. Kearns GL. Impact of developmental pharmacology on pediatric study design: overcoming the challenges. J Allergy Clin Immunol. 2000;106(3 Suppl):S128–38.

    Article  CAS  PubMed  Google Scholar 

  84. West DP, Worobec S, Solomon LM. Pharmacology and toxicology of infant skin. J Investig Dermatol. 1981;76(3):147–50.

    Article  CAS  PubMed  Google Scholar 

  85. Powell H, Swarner O, Gluck L, Lampert P. Hexachlorophene myelinopathy in premature infants. J Pediatr. 1973;82(6):976–81.

    Article  CAS  PubMed  Google Scholar 

  86. Dilly SA. Scanning electron microscope study of the development of the human respiratory acinus. Thorax. 1984;39(10):733–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Everard ML. Inhalation therapy for infants. Adv Drug Deliv Rev. 2003;55(7):869–78.

    Article  CAS  PubMed  Google Scholar 

  88. Amirav I, Newhouse MT. Aerosol therapy in infants and toddlers: past, present and future. Expert Rev Respir Med. 2008;2(5):597–605.

    Article  PubMed  Google Scholar 

  89. Amirav I, Newhouse MT. Deposition of small particles in the developing lung. Paediatr Respir Rev. 2012;13(2):73–8.

    Article  PubMed  Google Scholar 

  90. Schuepp KG, Jauernig J, Janssens HM, et al. In vitro determination of the optimal particle size for nebulized aerosol delivery to infants. J Aerosol Med. 2005;18(2):225–35.

    Article  PubMed  Google Scholar 

  91. Kohler E, Jilg G, Avenarius S, Jorch G. Lung deposition after inhalation with various nebulisers in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F275–9.

    Article  CAS  PubMed  Google Scholar 

  92. Fok TF, Monkman S, Dolovich M, et al. Efficiency of aerosol medication delivery from a metered dose inhaler versus jet nebulizer in infants with bronchopulmonary dysplasia. Pediatr Pulmonol. 1996;21(5):301–9.

    Article  CAS  PubMed  Google Scholar 

  93. Sood BG, Peterson J, Malian M, et al. Jet nebulization of prostaglandin E1 during neonatal mechanical ventilation: stability, emitted dose and aerosol particle size. Pharmacol Res. 2007;56(6):531–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Fink JB. Delivery of inhaled drugs for infants and small children: a commentary on present and future needs. Clin Ther. 2012;34(11):S36–45.

    Article  CAS  PubMed  Google Scholar 

  95. Ballard J, Lugo RA, Salyer JW. A survey of albuterol administration practices in intubated patients in the neonatal intensive care unit. Respir Care. 2002;47(1):31–8.

    PubMed  Google Scholar 

  96. Lugo RA, Kenney JK, Keenan J, Salyer JW, Ballard J, Ward RM. Albuterol delivery in a neonatal ventilated lung model: nebulization versus chlorofluorocarbon- and hydrofluoroalkane-pressurized metered dose inhalers. Pediatr Pulmonol. 2001;31(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  97. Fok TF, Lam K, Ng PC, et al. Delivery of salbutamol to nonventilated preterm infants by metered-dose inhaler, jet nebulizer, and ultrasonic nebulizer. Eur Respir J. 1998;12(1):159–64.

    Article  CAS  PubMed  Google Scholar 

  98. Engle WA. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics. 2008;121(2):419–32.

    Article  PubMed  Google Scholar 

  99. El-Gendy N, Kaviratna A, Berkland C, Dhar P. Delivery and performance of surfactant replacement therapies to treat pulmonary disorders. Ther Deliv. 2013;4(8):951–80.

    Article  CAS  PubMed  Google Scholar 

  100. Sweet DG, Halliday HL. The use of surfactants in 2009. Arch Dis Child Educ Pract Ed. 2009;94(3):78–83.

    Article  CAS  PubMed  Google Scholar 

  101. Nimmo AJ, Carstairs JR, Patole SK, Whitehall J, Davidson K, Vink R. Intratracheal administration of glucocorticoids using surfactant as a vehicle. Clin Exp Pharmacol Physiol. 2002;29(8):661–5.

    Article  CAS  PubMed  Google Scholar 

  102. Hughes WT, Sillos EM, LaFon S, et al. Effects of aerosolized synthetic surfactant, atovaquone, and the combination of these on murine Pneumocystis carinii pneumonia. J Infect Dis. 1998;177(4):1046–56.

    Article  CAS  PubMed  Google Scholar 

  103. van’t Veen A, Mouton JW, Gommers D, Lachmann B. Pulmonary surfactant as vehicle for intratracheally instilled tobramycin in mice infected with Klebsiella pneumoniae. Br J Pharmacol. 1996;119(6):1145–8.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Yeh TF, Lin HC, Chang CH, et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics. 2008;121(5):e1310–8.

    Article  PubMed  Google Scholar 

  105. Ari A, Restrepo RD. Aerosol delivery device selection for spontaneously breathing patients: 2012. Respir Care. 2012;57(4):613–26.

    Article  PubMed  Google Scholar 

  106. Iles R, Lister P, Edmunds AT. Crying significantly reduces absorption of aerosolised drug in infants. Arch Dis Child. 1999;81(2):163–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Murakami G, Igarashi T, Adachi Y, et al. Measurement of bronchial hyperreactivity in infants and preschool children using a new method. Ann Allergy. 1990;64(4):383–7.

    CAS  PubMed  Google Scholar 

  108. Moss ML. The veloepiglottic sphincter and obligate nose breathing in the neonate. J Pediatr. 1965;67(2):330–1.

    Article  Google Scholar 

  109. Djupesland PG, Skretting A, Winderen M, Holand T. Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med. 2004;17(3):249–59.

    Article  CAS  PubMed  Google Scholar 

  110. Guerin C, Fassier T, Bayle F, Lemasson S, Richard JC. Inhaled bronchodilator administration during mechanical ventilation: how to optimize it, and for which clinical benefit? J Aerosol Med Pulm Drug Deliv. 2008;21(1):85–96.

    Article  PubMed  Google Scholar 

  111. Fink JB, Dhand R, Duarte AG, Jenne JW, Tobin MJ. Aerosol delivery from a metered-dose inhaler during mechanical ventilation. An in vitro model. Am J Respir Crit Care Med. 1996;154(2 Pt 1):382–7.

    Article  CAS  PubMed  Google Scholar 

  112. Hess DR, Dillman C, Kacmarek RM. In vitro evaluation of aerosol bronchodilator delivery during mechanical ventilation: pressure-control vs. volume control ventilation. Intensive Care Med. 2003;29(7):1145–50.

    Article  PubMed  Google Scholar 

  113. Mazela J, Polin RA. Aerosol delivery to ventilated newborn infants: historical challenges and new directions. Eur J Pediatr. 2011;170(4):433–44.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Diot P, Morra L, Smaldone GC. Albuterol delivery in a model of mechanical ventilation. Comparison of metered-dose inhaler and nebulizer efficiency. Am J Respir Crit Care Med. 1995;152(4 Pt 1):1391–4.

    Article  CAS  PubMed  Google Scholar 

  115. Fink JB, Dhand R, Grychowski J, Fahey PJ, Tobin MJ. Reconciling in vitro and in vivo measurements of aerosol delivery from a metered-dose inhaler during mechanical ventilation and defining efficiency-enhancing factors. Am J Respir Crit Care Med. 1999;159(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  116. Sood BG, Latif Z, Shen Y, et al. Aerosol delivery during high frequency jet ventilation: an MRI evaluation. Respir Care. 2012;57(11):1901–7.

    Article  PubMed  Google Scholar 

  117. Baleine J, Milesi C, Mesnage R, et al. Intubation in the delivery room: experience with nasal midazolam. Early Hum Dev. 2014;90(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  118. Sharma R, Harish R. Comparative study on the efficacy of intranasal midazolam vs intravenous midazolam in convulsing neonates and children. Res Rev J Med Health Sci. 2013;2(4):54–7.

    Google Scholar 

  119. Chiaretti A, Barone G, Rigante D, et al. Intranasal lidocaine and midazolam for procedural sedation in children. Arch Dis Child. 2011;96(2):160–3.

    Article  PubMed  Google Scholar 

  120. Keane EF. Another way to administer antiepileptic medications in infants and children. MCN Am J Matern Child Nurs. 1993;18(5):270–4.

    Article  CAS  PubMed  Google Scholar 

  121. Graves NM, Kriel RL. Rectal administration of antiepileptic drugs in children. Pediatr Neurol. 1987;3(6):321–6.

    Article  CAS  PubMed  Google Scholar 

  122. van Lingen RA, Deinum JT, Quak JM, et al. Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80(1):F59–63.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Anderson BJ, Holford NH, Woolard GA. Paracetamol kinetics in neonates. Anaesth Intensive Care. 1997;25:721–2.

    Google Scholar 

  124. Hopkins CS, Underhill S, Booker PD. Pharmacokinetics of paracetamol after cardiac surgery. Arch Dis Child. 1990;65(9):971–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Keinanen S, Hietula M, Simila S, Kouvalainen K. Antipyretic therapy. Comparison of rectal and oral paracetamol. Eur J Clin Pharmacol. 1977;12(1):77–80.

    Article  CAS  PubMed  Google Scholar 

  126. Arana A, Morton NS, Hansen TG. Treatment with paracetamol in infants. Acta Anaesthesiol Scand. 2001;45(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  127. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50(2):125–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Zuo XC, Ng CM, Barrett JS, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics. 2013;23(5):251–61.

    Article  CAS  PubMed  Google Scholar 

  129. Slomkowski S, Aleman JV, Gilbert RG, et al. Terminology of polymers and polymerization processes in dispersed systems (IUPAC recommendations 2011). Pure Appl Chem. 2011;83(12):2229–59.

    Article  CAS  Google Scholar 

  130. Amirav I, Newhouse MT, Luder A, Halamish A, Omar H, Gorenberg M. Feasibility of aerosol drug delivery to sleeping infants: a prospective observational study. BMJ Open. 2014;4(3):e004124.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Dvorak M. Medicine dispensing pacifier. US Patent 5,512,047; 1996.

  132. Noble DE. Medication dispensing pacifier. US Patent 5,078,734; 1992.

  133. Luehne-Porath L. Medicine dispensing pacifier. US Patent D445,902; 2001.

  134. Dumont KE, Dumont D. Medication dispensing pacifier. US Patent D476,085; 2003.

  135. Brenner V. Infant medicine dispenser. US Patent 2,013,009,0595; 2013.

  136. Walsh J, Bickmann D, Breitkreutz J, Chariot-Goulet M. Delivery devices for the administration of paediatric formulations: overview of current practice, challenges and recent developments. Int J Pharm. 2011;415(1–2):221–31.

    Article  CAS  PubMed  Google Scholar 

  137. Kraus DM, Stohlmeyer LA, Hannon PR, Freels SA. Effectiveness and infant acceptance of the Rx medibottle versus the oral syringe. Pharmacotherapy. 2001;21(4):416–23.

    Article  CAS  PubMed  Google Scholar 

  138. Purswani MU, Radhakrishnan J, Irfan KR, Walter-Glickman C, Hagmann S, Neugebauer R. Infant acceptance of a bitter-tasting liquid medication: a randomized controlled trial comparing the Rx medibottle with an oral syringe. Arch Pediatr Adolesc Med. 2009;163(2):186–8.

    Article  PubMed  Google Scholar 

  139. Foinard A, Decaudin B, Barthelemy C, Debaene B, Odou P. Prevention of drug delivery disturbances during continuous intravenous infusion: an in vitro study on a new multi-lumen infusion access device. Ann Fr Anesth Reanim. 2013;32(9):e107–12.

    Article  CAS  PubMed  Google Scholar 

  140. World Health Organization. Report of the informal expert meeting on dosage forms of medicines for children. Geneva: World Health Organization; 2008.

    Google Scholar 

  141. Kayitare E, Vervaet C, Ntawukulilyayo JD, Seminega B, Bortel V, Remon JP. Development of fixed dose combination tablets containing zidovudine and lamivudine for paediatric applications. Int J Pharm. 2009;370(1–2):41–6.

    Article  CAS  PubMed  Google Scholar 

  142. Laulicht B, Langer R, Karp JM. Quick-release medical tape. Proc Natl Acad Sci U S A. 2012;109(46):18803–8.

    Article  PubMed Central  PubMed  Google Scholar 

  143. Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42(6):657–8.

    Article  CAS  PubMed  Google Scholar 


Page 2

From: Challenges Associated with Route of Administration in Neonatal Drug Delivery

Route of administration Physiologic factor Function in neonates compared with adults Effect on bioavailability/deliverability of drug from selected dosage form References
Oral Stomach pH At birth: more basic within 24 h Postnatal: approximately adult levels (1–3)

1 week postnatal: more basic

Weakly basic drugs will have increased bioavailability in basic stomach environment, while weakly acidic drugs will have decreased bioavailability [8–11, 13, 14, 143]
Gastric emptying Reduced Decreased absorption rate [9, 15, 16]
Intestinal surface area Reduced Decreased absorption [9]
Intestinal motility and peristalsis Reduced Increased absorption [15, 26]
Intestinal P-gp expression Reduced Increased absorption [29]
Intestinal CYP metabolism Varied depending on CYP, but decreased in most cases Depends on CYP, but often increased bioavailability due to decreased metabolism [30–33, 35]
Intravenous Blood volume Reduced Limitation to carrier flow rate for IV fluids [15, 52, 54]
Intramuscular Muscle mass Reduced Restricts options for IM delivery [15, 69, 70]
Muscle vascularization Variable Can result in reductions or fluctuations of IM drug reaching systemic circulation [69]
Subcutaneous Subcutaneous fat Reduced Can result in drug leaking from depot [15, 80]
Topical and transdermal Stratum corneum thickness <35 weeks’ gestation: reduced
≥35 weeks’ gestation: approximately adult thickness
Increased systemic bioavailability for neonates <35 weeks’ gestational age [81]
Stratum corneum hydration Increased Increased bioavailability for most hydrophilic drugs [12, 82]
Surface area to bodyweight ratio Increased Increased bioavailability [12, 82]
Intrapulmonary Lung branching and development Immature Unclear, potentially decreased lower lung deposition/bioavailability [86, 87]
Inspiratory flow and volume Decreased Reduced likelihood of upper airway impaction, potential for increased bioavailability [87]
Rectal Size of rectum Reduced Potential for reduced bioavailability due to inability to avoid portal absorption [123]

  1. IV intravenous, IM intramuscular, P-gp P-glycoprotein, CYP cytochrome P450