Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A

Answer

Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
Verified

Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
Shearing strain is created along the side surface of the punched disk. Note that the forces exerted on the disk are exerted along the circumference of the disk, and the total force exerted on its center only. Let us assume that the shearing stress along the side surface of the disk is uniform, then \[F>\int_{surface}^{{}}{d{{F}_{\max }}}=\int_{surface}^{{}}{{{\sigma }_{\max }}dA={{\sigma }_{\max }}}\int_{surface}^{{}}{dA}\] \[=\int_{{}}^{{}}{{{\sigma }_{\max }}.A={{\sigma }_{\max }}.2\pi \left( \frac{D}{2} \right)h}\] \[=3.5\times {{10}^{8}}\times \left( \frac{1}{2}\times {{10}^{-2}} \right)\times 0.3\times {{10}^{-2}}\times 2\pi \] \[=3.297\times {{10}^{4}}\simeq 3.3\times {{10}^{4}}N\]

warning Report Error


Page 4

  • Correct Answer: A

    Solution :

    [a]
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
    \[\frac{r-R}{x}=\frac{3R-R}{L}\Rightarrow r=R\left( 1+\frac{2x}{L} \right);Y=\frac{Mg}{\pi {{R}^{2}}\frac{dL}{dx}}\]             \[dL\frac{Mg}{\pi {{R}^{2}}};\frac{dx}{{{\left( 1+\frac{2x}{L} \right)}^{2}}}\]             \[\Delta L=\frac{Mg}{Y\pi {{R}^{2}}}\int\limits_{0}^{L}{\frac{dx}{{{\left( 1+\frac{2x}{L} \right)}^{2}}}=\frac{MgL}{3\pi {{R}^{2}}Y};}\] \[L'=L+\Delta K=L\left( 1+\frac{1}{3}\frac{Mg}{\pi {{R}^{2}}Y} \right)\]

warning Report Error


Page 5

  • Correct Answer: D

    Solution :

    [d] \[\beta \frac{\Delta V}{V}=-\Delta P\]                         \[\Delta V\simeq -2\pi ab\Delta a\] \[{{V}_{f}}=\pi {{a}^{2}}b\] \[\frac{\Delta V}{V}=\frac{-2\pi ab\Delta a}{\pi {{a}^{2}}b}=\frac{-2\Delta a}{a}\] \[\Rightarrow \,\Delta P=\frac{2\beta \Delta a}{a}\] Normal force = \[=\frac{2\beta \Delta a}{a}2\pi ab\] \[=4\pi \beta \,\,b\,\Delta a\] friction \[=\mu N\] \[=4\pi \mu \beta \,\,b\,\,a\]

warning Report Error


Page 6

  • Correct Answer: A

    Solution :

    [a] \[\ell =1m\]             \[r=5\times {{10}^{-3}}m\]             \[F=50\pi \,\times {{10}^{3}}N\]                       \[\gamma =\frac{F/A}{\frac{\Delta \ell }{\ell }}\]             \[\gamma =\frac{\Delta \ell }{\ell }=\frac{F}{A}\]             \[\gamma =\frac{50\pi \times {{10}^{3}}}{\pi \times {{(5\times {{10}^{-3}})}^{2}}}\times \frac{\ell }{\Delta \ell }\]             \[\gamma =\frac{50\times {{10}^{3}}}{25\times {{10}^{-6}}}\times \frac{1}{\Delta \ell }\Rightarrow \gamma =\frac{2\times {{10}^{9}}}{\Delta \ell }\]             \[\gamma =\frac{2\times {{10}^{9}}}{\varepsilon }\] \[\gamma \max .=2\times {{10}^{9}}\]

warning Report Error


Page 7

  • Correct Answer: C

    Solution :

    [c] \[Stress=\frac{Force}{area}=\frac{mg}{A}\] \[=\frac{volume\times density\times g}{Ara}\]            \[Stress=\frac{{{L}^{3}}\rho g}{{{L}^{2}}}\]
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A

warning Report Error


Page 8

  • Correct Answer: C

    Solution :

    [c] Due to thermal expansion            
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
    Due to External pressure
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
    Equating both
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
    get
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
    Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A

warning Report Error


Page 9

  • Correct Answer: A

    Solution :

    [a] \[K=\frac{mg/a}{\frac{\Delta V}{V}}\] and \[V=\frac{4}{3}\pi {{r}^{3}}\] \[\therefore \frac{\Delta V}{V}=3\frac{dr}{r}\] So, \[K=\frac{mg/a}{3\frac{dr}{r}}\Rightarrow \frac{dr}{r}=\frac{mg}{3Ka}\]

warning Report Error


Page 10

  • Correct Answer: B

    Solution :

    [b] For same material the ration of stress to strain is same For first cube \[Stres{{s}_{1}}=\frac{{{10}^{5}}}{({{0.1}^{2}})}\] \[strai{{n}_{1}}=\frac{0.5\times {{10}^{-2}}}{0.1}\] For second block, \[stres{{s}_{2}}=\frac{{{10}^{5}}}{{{(0.2)}^{2}}}\] \[strai{{n}_{2}}=\frac{x}{0.2}\] where\[x\] is the displacement for second block. For same material, \[\frac{stres{{s}_{1}}}{strai{{n}_{1}}}=\frac{stres{{s}_{2}}}{strai{{n}_{2}}}\] From this \[x=0.25cm\]

warning Report Error


Page 11

  • Correct Answer: B

    Solution :

    [b] \[d\,sin\,\theta =n\,\lambda \] \[0.320\,\times \,{{10}^{-3}}.\,\sin 30{}^\circ =n.500\,\,\times \,\,{{10}^{-9}}\] \[n\,\,=\,\,\frac{320\,\,\times \,{{10}^{-6}}}{500\,\times \,{{10}^{-9}}}\,\,\times \,\frac{1}{2}\,\,=\,\,\frac{16}{50}\,\times \,1000\,=\,320\] So, total no. of bright fringes \[=\text{ }2\left( 320 \right)+1=641\]


  • Page 12

  • Correct Answer: B

    Solution :

    [b] \[d\text{ }sin\text{ }\theta =n\lambda ,\] In question \[\theta =\frac{1}{40}\] which is very small \[\therefore \text{ }sin\text{ }\theta =\theta =\frac{1}{40}\] \[d\times \theta =n\lambda ,\] \[n\,\,=\,\,\frac{d\theta }{\lambda }\,\,=\,\,\frac{0.1\,mm}{40\,\lambda }\] \[n=\frac{2500}{\lambda }nm\,\] When \[\lambda =380\] \[{{n}_{1}}\,=\,\frac{2500}{350}\,\,=\,\,6.578\] \[for\,\,\lambda =740\,nm\] \[{{n}_{2}}\,=\,\frac{2500}{740}\,=\,3.378\] \[\therefore \,\,\,\,n=4,\,\,5,\,\,6\] \[for\text{ }n=4,\text{ }\lambda =625\text{ }nm\] \[for\text{ }n=5,\text{ }\lambda =500\text{ }nm\]


  • Page 13

    • Correct Answer: D

      Solution :

      [d] Let \[\rho \]and \[\sigma \]be the density of the liquid and material of the load respectively. In first case, the extension in the wire is \[x=Mg/k=V\rho g/k\]                             ….(i) When the load is immersed in the liquid, up thrust + internal force due to extension in wire = weight of the load \[\Rightarrow V\sigma g+k{{x}_{1}}=V\rho g\Rightarrow {{x}_{1}}=Vg(\rho -\sigma )/k\] Using (i) and (ii), \[{{x}_{1}}=\frac{Vgx}{Vg\rho }(\rho -\sigma )=x\left( 1-\frac{\sigma }{\rho } \right)=4\times \left( 1-\frac{2}{8} \right)=3mm\]

    warning Report Error


    Page 14

    • Correct Answer: C

      Solution :

      [c] Energy of catapult\[=\frac{1}{2}\times {{\left( \frac{\Delta \ell }{\ell } \right)}^{2}}\times Y\times A\times \ell \] = Kinetic energy of the ball\[=\frac{1}{2}m{{\text{v}}^{2}}\] therefore, \[\frac{1}{2}\times {{\left( \frac{20}{42} \right)}^{2}}\times Y\times \pi \times {{3}^{2}}\times {{10}^{-6}}\times 42\times {{10}^{-2}}=\] \[\frac{1}{2}\times 2\times {{10}^{-2}}\times {{(20)}^{2}}\] \[Y\simeq 3\times {{10}^{6}}N{{m}^{-2}}\]

    warning Report Error


    Page 15

    • Correct Answer: D

      Solution :

      [d] Tensile stresss in wire will be \[=\frac{\text{Tensile}\,\,\text{force}}{\text{Cross}\,\,\text{section}\,\,\text{Area}}\] \[=\frac{mg}{\pi {{R}^{2}}}=\frac{4\times 3.1\pi }{\pi \times 4\times {{10}^{-6}}}N{{m}^{-2}}=3.1\times {{10}^{6}}N{{m}^{-2}}\]

    warning Report Error


    Page 16

    • Correct Answer: B

      Solution :

      [b] Given \[\frac{{{Y}_{A}}}{{{Y}_{B}}}=\frac{7}{4}\,\,\,\,\,\,\,\,\,\,{{L}_{A}}=2m\,\,\,\,\,\,\,\,\,\,{{A}_{A}}=\pi {{R}^{2}}\]     \[{{L}_{B}}=1.5m\]   \[{{A}_{B}}=\pi {{(2mm)}^{2}}\] \[\frac{F}{A}=Y\left( \frac{\ell }{L} \right)\] given F and \[\ell \]are same \[\Rightarrow \frac{AY}{L}\] is same \[\frac{{{A}_{A}}{{Y}_{A}}}{{{L}_{A}}}=\frac{{{A}_{B}}{{Y}_{B}}}{{{L}_{B}}}\] \[\Rightarrow \]\[\frac{\left( \pi {{R}^{2}} \right)\left( \frac{7}{4}{{Y}_{B}} \right)}{2}=\frac{\pi {{\left( 2mm \right)}^{2}}.{{Y}_{B}}}{1.5}\] \[R=1.74mm\]

    warning Report Error


    Page 17

    • Correct Answer: A

      Solution :

      [a] \[\frac{F}{A}=stress\]             \[\frac{400\times 4}{\pi {{d}^{2}}}=379\times {{10}^{6}}\]             \[{{d}^{2}}=\frac{1600}{\pi \times 379\times {{10}^{6}}}=1.34\times {{10}^{-6}}\]             \[d=\sqrt{1.34}\times {{10}^{-3}}=1.15\times {{10}^{-3}}m\]

    warning Report Error


    Page 18

    • Correct Answer: B

      Solution :

      [b]
      Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
      \[{{k}_{1}}=\frac{{{y}_{1}}{{A}_{1}}}{{{\ell }_{1}}}=\frac{120\times {{10}^{9}}\times A}{1}\] \[{{k}_{2}}=\frac{{{y}_{2}}{{A}_{2}}}{{{\ell }_{2}}}=\frac{60\times {{10}^{9}}\times A}{1}\] \[{{k}_{eq}}=\frac{{{k}_{1}}{{k}_{2}}}{{{k}_{1}}\times {{k}_{2}}}=\frac{120\times 60}{180}\times {{10}^{9}}\times A\] \[{{k}_{eq}}=40\times {{10}^{9}}\times A\] \[F={{k}_{eq}}(x)\] \[F=(40\times {{10}^{9}})A.(0.2\times {{10}^{-3}})\] \[\frac{F}{A}=8\times {{10}^{6}}N/{{m}^{2}}\]         No option is matching. Hence question must be bonus.

    warning Report Error


    Page 19

    • Correct Answer: B

      Solution :

      [b] \[{{I}_{1}}=4{{I}_{0}}\]                 \[{{I}_{2}}={{I}_{0}}\]                \[{{I}_{\max }}={{(\sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}})}^{2}}\]             \[={{(2\sqrt{{{I}_{0}}}+\sqrt{{{I}_{0}}})}^{2}}=9{{I}_{0}}\]             \[{{I}_{\min }}={{(\sqrt{{{I}_{1}}}-\sqrt{{{I}_{2}}})}^{2}}\]             \[={{(2\sqrt{{{I}_{0}}}-\sqrt{{{I}_{0}}})}^{2}}={{I}_{0}}\]             \[\therefore \]\[\frac{{{I}_{\max }}}{{{\operatorname{I}}_{\min }}}=\frac{9}{1}\]

    warning Report Error


    Page 20

    • Correct Answer: B

      Solution :

      [b]            
      Two blocks of masses m and M are connected by means of a metal wire of cross sectional area A
      \[\therefore \] Length of cylinder remains unchanged so\[{{\left( \frac{F}{A} \right)}_{Compressive}}={{\left( \frac{F}{A} \right)}_{Thermal}}\] \[\frac{F}{\pi {{r}^{2}}}=Y\alpha T\] (\[\alpha \]is linear coefficient of expansion) \[\therefore \]\[\alpha =\frac{F}{YT\pi {{r}^{2}}}\] \[\therefore \]The coefficient of volume expansion\[\gamma =3\alpha \] \[\therefore \]\[\gamma =3\frac{F}{YT\pi {{r}^{2}}}\]

    warning Report Error


    Page 21

    warning Report Error


    Page 22

    • Correct Answer: A

      Solution :

      [a] Energy density \[=\frac{1}{2}\,stress\times strain\] Energy density\[=\frac{1}{2}\frac{F}{A}\times \frac{F}{AY}\] \[\frac{{{u}_{1}}}{{{u}_{2}}}={{\left( \frac{{{d}_{2}}}{d{{}_{1}}} \right)}^{4}}\] \[\frac{{{d}_{1}}}{{{d}_{2}}}={{\left( 4 \right)}^{1/4}}\] \[\frac{{{d}_{1}}}{{{d}_{2}}}=\sqrt{2}:1\]

    warning Report Error