Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Dalam kegiatan sehari-hari, tentunya kita hampir setiap saat melihat maupun melakukan kegiatan yang terdapat sebuah gaya pegas, hanya saja kita tidak menyadarinya. Salah satu contoh sederhana gaya pegas yaitu gerakan peer pada jam. Sistem kerja peer tersebutlah yang membuat jam dapat berputar dan menunjukkan waktu yang sesuai. Lalu apa itu Gaya Pegas? Kita simak penjelasan dibawah ini tentang Pengertian Gaya Pegas, Rumus dan Contoh Soal lengkap dengan informasi lainnya terkait dengan gaya pegas.

Pengertian Gaya Pegas

Gaya pegas sering disebut dengan gaya elastis atau karet karena gaya pegas memiliki bentuk yang dapat berubah menjadi lebih panjang dari bentuk semula. Padahal kenyataanya, pegas dihasilkan dari benda dengan bahan logam dan tidak memiliki kelenturan. Hanya saja karena adanya gaya yang dihasilkan itulah, benda berbahan logam menjadi bersifat elastis.

Dalam ilmu fisika, gaya pegas disebut dengan istilah Hukum Hooke.

Hukum Hooke merupakan sebuah ilmu yang mengkaji jumlah gaya maksimum yang diberikan pada sebuah benda yang bersifat elastis (sifat elastis sering dimiliki oleg pegas) agar tidak dapat melewati batas elasitas yang dapat menyebabkan benda tersebut kehilangan sifat elasisnya.

Baca Juga : Hukum Hooke

Lalu, Bagaimana bunyi Hukum Hooke?

Bunyi Hukum Hooke

“Jika gaya tarik yang diberikan pada sebuah benda pegas tidak melebihi batas elastisnya, maka pertambahan panjang benda yang terjadi menjadi sebanding dengan gaya tarik yang diberikan”.

Timbulnya gaya pegas dikarenakan adanya sifat elastik, sifat lenting pegas atau karet gelang. Sifat elastik tersebut dimiliki oleh benda yang jika diubah bentuknya dan kemudian dilepaskan kembali maka bentuk benda tersebut akan kembali ke bentuk asal atau bentuk semula.

Karena gaya pegas disebabkan oleh sifat elastik maka gaya pegas disebut juga dengan gaya elastik atau gaya lenting.

Gaya pegas terjadi pada benda-benda lenting yang bentuknya diubah, misalnya gaya pegas yang muncul pada bambu yang dibengkokkan atau busur panah yang ditarik. Dibawah ini beberapa contoh benda yang memiliki gaya pegas.

Contoh Benda Memiliki Gaya Pegas

Gaya pegas yang terjadi belum tentu karena benda memiliki sifat elastis, berikut ini beberapa contoh benda yang memiliki gaya pegas dan digunakan dalam kebutuhan sehari-hari, antaralain:

  • Jam kasa memiliki nilai gaya pegas yang berfungsi untuk memberikan informasi lokasi kapal pada saat berada di tengah laut.
  • Sambungan komponen persneling pada kendaraan memanfaatkan gaya pegas untuk dapat bekerja dengan baik.
  • Teleskop memiliki sistem kerja yang dapat digunakan untuk melihat benda luar angkasa agat terlihat lebih dekat.
  • Mikrosop berfungsi untuk melihat benda atau komponen kecil yang tak tampak kasat mata.
  • Ayunan juga menerapkan sistem gaya pegas.
  • Alat ukur gravitasi bumi juga menggunakan pegas.

Rumus Gaya Pegas

Gaya pegas didefinisikan dalam hukum hooke. Hukum hooke juga dihitung dan mendapat angka untuk mendefinisikan gaya tersebut. Berikut ini penulisan sistematis rumus gaya pegas:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

F = k.x

Keterangan:
F = gaya yang diberikan pada suatu pegas (N)
k = konstanta yang dimiliki pegas (N/m)
x = pertambahan panjang pegas akibat dari gaya (m)

Secara matematis, hukum Hooke ini dinyatakan sebagai berikut:

F = k.Δx

Keterangan:
F : Gaya Berat atau Gaya Pegas atau Gaya yg Bekerja pada Pegas
k : Konstanta Pegas
Δx: Pertambahan Panjang

Baca Juga : Materi Gaya Gesek

Konstanta Pegas

Konstanta pegas merupakan sebuah karakteristik dari pegas yang di definisikan sebagai rasio dari gaya yang bekerja pada pegas terhadap perubahan pegas yang dihasilkan.

Selain dengan rumus pegas diatas, berikut ini fenomena-fenomena dari pegas yang secara sistematis ditulisakan dengan berbagai rumus dibawah ini:

1. Tegangan

Tegangan adalah keadaan dimana sebuah benda mengalami pertambahan panjang akibat gaya yang diberikan pasa salah satu ujungnya. Berikut rumus yang digunakan:

σ = F/A

Keterangan:
F : gaya (N)
σ : tegangan (N/m2 atau Pa)
A :luas penampang (m2)

2. Modus Elastisitas

Perbedaan antara regangan dan tegangan yang dialami sebuah benda yang disebut dengan modus elastisitas. Rumus yang digunakan yaitu:

E = σ/e

Keterangan:
σ = tegangan (N/m2 atau Pa)
E = modulus elastisitas (N/m)
e = regangan

3. Regangan

Perbandingan antar panjang awal benda dengan pertambahan panjang disebut dengan Regangan. Hal ini terjadi karena gaya yang diberikan atau dihilangkan pada sebuah benda. Rumus yang digunakan sebagai berikut:

e = ΔL/ Lo

Keterangan: e = regangan

Lo = panjang mula-mula (m)


ΔL = pertambahan panjang (m)

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Yuk, belajar tentang elastisitas zat padat dan Hukum Hooke secara lengkap di artikel Fisika kelas 11 ini! Mulai dari modulus elastisitas, rumus, contoh soal, hingga contoh penerapannya dalam kehidupan sehari-hari!

--

Saat sedang berkendara, kamu pasti pernah melewati polisi tidur di jalan. Eits! polisi tidur yang dimaksud bukan polisi yang sedang tiduran di jalan, ya. Tapi, tambahan aspal/semen yang dipasang melintang di jalan guna memperlambat kecepatan kendaraan. Nah, saat melewati polisi tidur, kendaraanmu akan sedikit berguncang karena pengaruh dari tinggi polisi tidur tersebut. Apalagi kalau polisi tidurnya ada banyak, terus jaraknya berdekatan. Hmm… Mungkin jadinya bakal kayak gini.

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Berasa duduk di kursi pijat, bukan? (sumber: DestructionNation via YouTube)

Untungnya, setiap kendaraan memiliki alat yang berfungsi untuk mengatasi setiap guncangan yang terjadi di sepanjang perjalanan. Peredam kejut atau shock absorber nama kerennya. Peredam kejut akan menyerap setiap guncangan dan mengubahnya menjadi gerakan yang elastis.

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Peredam kejut (shock absorber) pada motor (sumber: motomaxx.id)

Perlu kamu ketahui, peredam kejut sangat penting untuk keselamatan. Tanpa adanya alat ini, bisa-bisa kendaraanmu akan terpental saat melewati polisi tidur atau jalan yang tidak rata permukaannya. Kalau kamu lihat gambar di atas, bentuk peredam kejut terlihat seperti pegas, ya. Hal ini yang menyebabkan sifatnya menjadi elastis. Eh, tapi, ngomong-ngomong masalah elastis, memangnya elastis itu apa, sih?

Konsep Elastisitas pada Benda Padat

Oke, sebelumnya, mari kita lakukan eksperimen sederhana. Coba kamu cari dua macam benda berbeda, yaitu pegas dan lilin mainan (plastisin). Kemudian, kamu tarik kedua benda tersebut secara bergantian dan lihat apa yang terjadi?

Baca Juga: Cara Gampang Memahami Konsep Momen Inersia

Pegas akan kembali ke bentuk semula setelah ditarik, sedangkan lilin mainan akan berubah ke bentuk yang baru, yaitu menjadi lebih panjang. Pasti itu jawabannya. Tapi, kenapa bisa begitu, ya? 

Jadi gini, pada dasarnya, semua benda yang ada di bumi dapat mengalami perubahan bentuk (deformasi) apabila diberikan sejumlah gaya. Kemungkinannya seperti percobaan di atas tadi.

Yap! Benda tersebut dapat kembali ke bentuk semula saat gaya yang diberikan dihilangkan atau benda tersebut berubah menjadi bentuk yang baru. Kalau gaya yang diberikan pada benda terlalu besar dan benda sudah melewati titik maksimalnya untuk meregang, bisa jadi benda tersebut akan hancur, lho!

Pengertian Elastisitas Zat Padat

Nah, kemampuan yang dimiliki benda untuk kembali ke kondisi awalnya saat gaya yang diberikan pada benda tersebut dihilangkan disebut elastisitas atau benda tersebut memiliki sifat yang elastis. Contohnya seperti pegas, karet gelang, per, dsb.

Sementara itu, jika benda tidak memiliki kemampuan untuk kembali lagi ke kondisi awalnya saat gaya yang diberikan dihilangkan, maka benda tersebut memiliki sifat plastis. Contohnya adalah plastisin, plastik, permen karet, tanah liat, dsb. 

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Umumnya, setiap benda yang memiliki sifat elastis pasti juga akan memiliki sifat plastis. Lho, kok bisa? Oke, misalnya saja, pegas yang kamu gunakan pada eksperimen pertama tadi kamu rentangkan secara terus-menerus dengan gaya yang semakin kuat. Apa yang akan terjadi? 

Baca Juga: Begini Bentuk Rangkaian Seri dan Paralel pada Pegas serta Resistor

Hubungan Antara Gaya dengan Pertambahan Panjang Benda Elastis

Mula-mula, mungkin pegas akan tetap kembali ke bentuk semula bila gaya yang kamu berikan tidak terlalu besar. Tapi, apabila pegas kamu rentangkan dengan gaya yang lebih besar lagi, ada saatnya pegas menjadi kendur dan sampai di titik tertentu, pegas tidak dapat kembali ke bentuk semula (plastis).

Kondisi ini menandakan kalau elastisitas pegas sudah terlampaui. Jika gaya terus diperbesar sampai melewati kemampaunnya untuk meregang, maka pegas akan patah. Hubungan antara gaya yang diberikan pada pegas dengan pertambahan panjang pegas dapat dibuat kedalam bentuk grafik seperti gambar berikut ini.

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Coba kamu perhatikan, ya. Garis lurus OA menunjukkan bahwa gaya F akan sebanding dengan pertambahan panjang pegas (ΔL). Ketika gaya F diperbesar lagi sampai melampaui titik A, ternyata garis pada grafik sudah tidak lurus lagi. Hal ini menandakan, batas linearitas pegas sudah terlampaui, namun pegas masih bisa kembali ke bentuk semula. Oleh karena itu, daerah yang dibatasi oleh titik O sampai B disebut daerah elastis. 

Apabila gaya F semakin diperbesar hingga melewati titik B, batas elastisitas sudah terlampaui. Akibatnya, setelah gaya F dihilangkan, pegas tidak bisa kembali ke bentuk semula (pegas akan bersifat plastis).

Nah, kalau gaya F terus diperbesar sampai titik C, pegas akan patah. Itulah mengapa tidak menutup kemungkinan benda yang bersifat elastis dapat menjadi plastis atau bahkan hancur. Balik lagi ke seberapa besar gaya yang diberikan pada benda tersebut.

Gaya yang menyebabkan perubahan bentuk benda akan sebanding dengan besaran yang disebut dengan tegangan. Sementara itu, hasil perubahan bentuk benda akibat tegangan disebut regangan yang berupa pertambahan panjang dari benda tersebut. Materi tegangan dan regangan dapat kamu pelajari lebih lengkap pada artikel Perbedaan Tegangan dan Regangan, ya. 

Modulus Elastisitas (Young)

Menurut Robert Hooke, perbandingan antara tegangan dengan regangan suatu benda disebut dengan modulus elastisitas (young) benda tersebut. Secara matematis, modulus elastisitas dapat dirumuskan sebagai berikut: 

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Nah, sekarang, supaya kamu semakin paham, kita coba latihan soal, yuk. Kita kerjakan sama-sama, ya.

Contoh Soal:

Andi memiliki sebatang logam besi dengan panjang 1 m dan luas permukaan 1 cm2. Kemudian, Andi menarik logam besi tersebut menggunakan mesin dengan gaya sebesar 5.000 N. Jika panjang akhir logam besi tersebut adalah 1,1 m, berapakah modulus elastisitas logam besi tersebut?

Pembahasan:

Diketahui:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi
 

Pertama-tama, kita perlu mencari besar tegangannya terlebih dahulu:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Setelah mencari besar tegangan, kita lanjut mencari besar regangannya:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Modulus elastisitasnya dapat diperoleh sebagai berikut:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Jadi, besar modulus elastisitas pada logam besi adalah sebesar 5 x 108 N/m2.

Berdasarkan eksperimen sebelumnya, kamu jadi tahu kalau sifat elastisitas suatu benda ada batasannya dan besar gaya yang diberikan suatu benda akan sebanding dengan pertambahan panjang benda tersebut. Hal ini juga telah lebih dulu disimpulkan oleh ilmuwan bernama Robert Hooke melalui percobaannya pada pegas. Oleh sebab itu, Hooke akhirnya membuat suatu hukum yang diberi nama dengan Hukum Hooke.

Konsep Hukum Hooke

Hubungan antara besar gaya dengan pertambahan panjang pegas pertama kali diamati oleh Robert Hooke, seorang ahli kimia dan matematika berkebangsaan Inggris. Hooke membuat hukum, yaitu Hukum Hooke yang menjelaskan tentang besar gaya maksimum yang dapat diberikan pada benda elastis agar tidak melewati batas elastisitasnya dan menghilangkan sifat elastis benda tersebut.

Besarnya gaya (F) akan berbanding lurus dengan pertambahan panjang pegas dari keadaan awalnya (ΔL). Artinya, semakin besar gaya yang diberikan, maka semakin besar juga pertambahan panjang pegasnya.

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Di bawah ini ada contoh soalnya, nih. Kita coba kerjakan, yuk! 

Contoh Soal:

Sebuah pegas dengan konstanta sebesar 1.000 N/m ditarik dengan gaya sebesar 100 N. Berapakah pertambahan panjang pegas tersebut ?

Pembahasan:

Diketahui:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Besar pertambahan pegas dapat kita cari menggunakan rumus Hukum Hooke seperti berikut:

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Jadi, besar pertambahan pegasnya adalah 0,1 meter.

Penerapan Konsep Hukum Hooke dalam Kehidupan 

Konsep Hukum Hooke ternyata banyak sekali diterapkan pada benda-benda disekitar kita. Selain penerapannya pada peredam kejut (shock absorber) kendaraan, beberapa contoh benda yang menerapkan konsep Hukum Hooke antara lain kasur pegas (spring bed), ketapel, busur panah, neraca pegas, sampai benda yang sering kamu gunakan sehari-hari. Apakah itu? Hayooo ada yang bisa menebak?

Yap! Betul. Per pada pulpen!

Tidak hanya itu saja, lho! Masih banyak benda-benda lain yang menggunakan konsep Hukum Hooke ini. Coba, tulis di kolom komentar ya bagi kamu yang tahu.

Wah, selesai sudah ya materi kita kali ini. Gimana? Seru nggak nih pembahasannya? Oh iya, kamu juga bisa pelajari materi elastisitas dan Hukum Hooke dengan lebih lengkap dan  menarik lagi di ruangbelajar, loh. Di sana, juga ada banyak latihan soal yang bisa kamu kerjakan untuk mengasah kemampuan kamu terhadap materi ini. Yuk, langganan, yuk!

Jika gaya yang diberikan dihilangkan energi potensial pegas akan berubah menjadi

Artikel ini telah diperbarui pada 31 Agustus 2022.