Varieties of Staphylococcus aureus that are resistant to the drug methicillin

Methicillin-resistant Staphylococcus aureus (MRSA) is a cause of staph infection that is difficult to treat because of resistance to some antibiotics.

Staph infections—including those caused by MRSA—can spread in hospitals, other healthcare facilities, and in the community where you live, work, and go to school.

You can help prevent infections and stop the spread of MRSA.

Surveillance of drug-resistant strains of MRSA

As strains of staph continue to adapt and change over time, it is critical for healthcare workers to track these changes. They need to know which strains are present within a community at any point in time, to which antibiotics the strains are resistant, and the severity of disease caused by the circulating strains. Two researchers affiliated with the Department of Molecular Virology Microbiology at Baylor College of Medicine, Drs. Edward Mason and James Versalovic and their colleagues have been conducting surveillance of both HA-MRSA and CA-MRSA in pediatric patients at Texas Children’s Hospital beginning in 2001. By analyzing strains isolated from these patients, the scientists have found that CA-MRSA accounts for an increasing percentage and number of infections. This information can help doctors select the optimal antibiotic treatment for infected patients.

Genetics changes in MRSA

Scientists would further like to understand the genetic changes in MRSA that allow the bacterium to cause serious illness in otherwise healthy individuals. To begin to answer this question, MVM scientists and others at Baylor College of Medicine initiated a project to obtain the DNA sequence of a strain of CA-MRSA called USA300. They chose the USA300 strain, one of two strains that cause the majority of CA-MRSA cases, because it has emerged as the predominant strain causing skin infections, as well as more serious infections, in both pediatric and adult patients in many states. Before 2000 this strain was rarely found in the community; today it accounts for 70 percent of CA-MRSA patients at Texas Children’s Hospital. Another reason for the interest in the USA300 strain is that it appears to be more virulent than other strains.

Drs. Sarah Highlander and Joseph Petrosino and colleagues at the Baylor Human Genome Sequencing Center sequenced the genome of this MRSA-resistant strain from a pediatric patient along with a community-associated staph strain that is susceptible to methicillin. They then compared the DNA sequences. They also compared the DNA sequence of these strains with the previously published staph genomes of isolates obtained elsewhere.

Based on the results of this analysis, the scientists concluded that the USA300 strain that they sequenced was very similar to other staph strains. This suggests that the increased virulence of the USA300 strain is due to subtle genetic changes within its genome. One intriguing finding of their study is that the bacterium has picked up a plasmid that contains a gene that confers resistance to bacitracin, an antibiotic commonly found in over-the-counter skin ointments.

With the genetic information describing USA300 in hand, the scientists can now zoom in on the regions that differ from other strains to pinpoint genes that may account for the ability of USA300 to cause serious illness in some people.

Mechanism of resistance to methicillin

Beta-lactam antibiotics are the most widely used class of drugs for the treatment of bacterial infections. They include penicillin and its derivatives, such as methicillin and amoxicillin. The beta-lactam ring portion of the antibiotic targets the penicillin-binding proteins (PBP), found in the bacterial cell membrane, which function in the synthesis of the cell wall. Binding of the antibiotic to the PBPs prevents the PBPs from performing their essential role and results in the death of the bacterial cell.

Dr. Timothy Palzkill, professor of Pharmacology and Chemical Biology and Molecular Virology and Microbiology, and his research team have been studying mechanisms of resistance to methicillin and other beta-lactam antibiotics. Gram-positive bacteria acquire resistance to beta-lactam antibiotics through the production of a protein called PBP2a, which is able to avoid the inhibitory effects of the antibiotics. This is the mechanism by which MRSA is able to persist despite treatment with multiple beta-lactam antibiotics.

Dr. Palzkill and coworkers conducted a study in which they found that the protein BLIP-II was able to weakly bind and inhibit PBP2a, making it susceptible to beta-lactam antibiotics. They are continuing this line of research by searching for mutations that increase the affinity of BLIP-II to PBP2a.

Learn more about some of the technical terms found on this page by visiting our glossary of terms.

1. Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev. 1997;10:505–20. [PMC free article] [PubMed] [Google Scholar]

2. Gorwitz RJ, et al. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis. 2008;197:1226–34. [PubMed] [Google Scholar]

3. Miller LG, Diep BA. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46:752–60. [PubMed] [Google Scholar]

4. Kazakova SV, et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med. 2005;352:468–75. [PubMed] [Google Scholar]

5. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32. [PubMed] [Google Scholar]

6. Muto CA, et al. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol. 2003;24:362–86. [PubMed] [Google Scholar]

7. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006;368:874–85. [PubMed] [Google Scholar]

8. Kaplan SL, et al. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin Infect Dis. 2005;40:1785–91. [PubMed] [Google Scholar]

9. Hersh AL, Chambers HF, Maselli JH, Gonzales R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med. 2008;168:1585–91. [PubMed] [Google Scholar]

10. Klevens RM, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Jama. 2007;298:1763–71. [PubMed] [Google Scholar]

11. Hope R, Livermore DM, Brick G, Lillie M, Reynolds R. Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001–06. J Antimicrob Chemother. 2008;62(Suppl 2):ii65–74. [PubMed] [Google Scholar]

12. Laupland KB, Ross T, Gregson DB. Staphylococcus aureus bloodstream infections: risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada, 2000–2006. J Infect Dis. 2008;198:336–43. [PubMed] [Google Scholar]

13. EARSS Annual Report. 2007. http://www.rivm.nl/earss/news/index.jsp.

14. Moran GJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med. 2006;355:666–74. [PubMed] [Google Scholar]

15. Fridkin SK, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med. 2005;352:1436–44. [PubMed] [Google Scholar]

16. Larsen A, Stegger M, Goering R, Sorum M, Skov R. Emergence and dissemination of the methicillin resistant Staphylococcus aureus USA300 clone in Denmark (2000–2005) Euro Surveill. 2007;12 [Google Scholar]

17. Larsen AR, et al. Epidemiology of European community-associated methicillin-resistant Staphylococcus aureus clonal complex 80 type IV strains isolated in Denmark from 1993 to 2004. J Clin Microbiol. 2008;46:62–8. [PMC free article] [PubMed] [Google Scholar]

18. Wannet WJ, et al. Emergence of virulent methicillin-resistant Staphylococcus aureus strains carrying Panton-Valentine leucocidin genes in The Netherlands. J Clin Microbiol. 2005;43:3341–5. [PMC free article] [PubMed] [Google Scholar]

19. Deurenberg RH, et al. Cross-border dissemination of methicillin-resistant Staphylococcus aureus, Euregio Meuse-Rhin region. Emerg Infect Dis. 2009;15:727–34. [PMC free article] [PubMed] [Google Scholar]

20. Vandenesch F, et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis. 2003;9:978–84. [PMC free article] [PubMed] [Google Scholar]

21. Stam-Bolink EM, Mithoe D, Baas WH, Arends JP, Moller AV. Spread of a methicillin-resistant Staphylococcus aureus ST80 strain in the community of the northern Netherlands. Eur J Clin Microbiol Infect Dis. 2007;26:723–7. [PMC free article] [PubMed] [Google Scholar]

22. Huang YC, Hwang KP, Chen PY, Chen CJ, Lin TY. Prevalence of methicillin-resistant Staphylococcus aureus nasal colonization among Taiwanese children in 2005 and 2006. J Clin Microbiol. 2007;45:3992–5. [PMC free article] [PubMed] [Google Scholar]

23. Nimmo GR, Coombs GW. Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. Int J Antimicrob Agents. 2008;31:401–10. [PubMed] [Google Scholar]

24. Kanerva M, et al. Community-associated methicillin-resistant Staphylococcus aureus, 2004–2006, Finland. J Clin Microbiol. 2009 [Google Scholar]

25. Park SH, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated bloodstream infections in Korea. Infect Control Hosp Epidemiol. 2009;30:146–55. [PubMed] [Google Scholar]

26. Gardella N, et al. Community-associated methicillin-resistant Staphylococcus aureus, eastern Argentina. Diagn Microbiol Infect Dis. 2008;62:343–7. [PubMed] [Google Scholar]

27. Francois P, et al. Methicillin-resistant Staphylococcus aureus, Geneva, Switzerland, 1993–2005. Emerg Infect Dis. 2008;14:304–7. [PMC free article] [PubMed] [Google Scholar]

28. Fang H, Hedin G, Li G, Nord CE. Genetic diversity of community-associated methicillin-resistant Staphylococcus aureus in southern Stockholm, 2000–2005. Clin Microbiol Infect. 2008;14:370–6. [PubMed] [Google Scholar]

29. Conly JM, Johnston BL. The emergence of methicillin-resistant Staphylococcus aureus as a community-acquired pathogen in Canada. Can J Infect Dis. 2003;14:249–51. [PMC free article] [PubMed] [Google Scholar]

30. Francis JS, et al. Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin Infect Dis. 2005;40:100–7. [PubMed] [Google Scholar]

31. Gonzalez BE, et al. Pulmonary manifestations in children with invasive community-acquired Staphylococcus aureus infection. Clin Infect Dis. 2005;41:583–90. [PubMed] [Google Scholar]

32. Kallen AJ, et al. Staphylococcus aureus community-acquired pneumonia during the 2006 to 2007 influenza season. Ann Emerg Med. 2009;53:358–65. [PubMed] [Google Scholar]

33. Lina G, et al. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis. 1999;29:1128–32. [PubMed] [Google Scholar]

34. Kirby W. Extraction of a highly potene penicillin inactivator from penicillin resistant Staphylococci. Science. 1944;99:452–53. [PubMed] [Google Scholar]

35. Barber M, Rozwadowska-Dowzenko M. Infection by penicillin-resistant staphylococci. Lancet. 1948;1:641–44. [PubMed] [Google Scholar]

36. Roundtree P, Freeman V. Infections caused by a particular phage type of Staphylococcus aureus. Med J Aust. 1956;42:157–61. [PubMed] [Google Scholar]

37. Blair JE, Carr M. Distribution of Phage Groups of Staphylococcus aureus in the Years 1927 through 1947. Science. 1960;132:1247–1248. [PubMed] [Google Scholar]

38. Bynoe ET, Elder RH, Comtois RD. Phage-typing and antibiotic-resistance of staphylococci isolated in a general hospital. Can J Microbiol. 1956;2:346–58. [PubMed] [Google Scholar]

39. Roundtree P, Beard M. Further observations on infections with phage type 80 staphylococci in Australia. Med J Aust. 1958;2:789–95. [PubMed] [Google Scholar]

40. Jevons MP, Parker MT. The evolution of new hospital strains of Staphylococcus aureus. J Clin Pathol. 1964;17:243–50. [PMC free article] [PubMed] [Google Scholar]

41. Barber M. Methicillin-resistant staphylococci. J Clin Pathol. 1961;14:385–93. [PMC free article] [PubMed] [Google Scholar]

42. Jevons M. “Celbenin”-resistant staphylococci. Br Med J. 1961;1:124–5. [Google Scholar]

43. Crisostomo MI, et al. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc Natl Acad Sci U S A. 2001;98:9865–70. [PMC free article] [PubMed] [Google Scholar]

44. Barrett FF, McGehee RF, Jr, Finland M. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N Engl J Med. 1968;279:441–8. [PubMed] [Google Scholar]

45. Bran JL, Levison ME, Kaye D. Survey for methicillin-resistant staphylococci. Antimicrob Agents Chemother. 1972;1:235–6. [PMC free article] [PubMed] [Google Scholar]

46. Mato R, et al. Clonal types and multidrug resistance patterns of methicillin-resistant Staphylococcus aureus (MRSA) recovered in Italy during the 1990s. Microb Drug Resist. 2004;10:106–13. [PubMed] [Google Scholar]

47. Enright MC, et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA) Proc Natl Acad Sci U S A. 2002;99:7687–92. [PMC free article] [PubMed] [Google Scholar]

48. Robinson DA, Enright MC. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47:3926–34. [PMC free article] [PubMed] [Google Scholar]

49. Deurenberg RH, Stobberingh EE. The evolution of Staphylococcus aureus. Infect Genet Evol. 2008;8:747–63. [PubMed] [Google Scholar]

50. Crossley K, Landesman B, Zaske D. An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. II. Epidemiologic studies. J Infect Dis. 1979;139:280–7. [PubMed] [Google Scholar]

51. Peacock JE, Jr, Marsik FJ, Wenzel RP. Methicillin-resistant Staphylococcus aureus: introduction and spread within a hospital. Ann Intern Med. 1980;93:526–32. [PubMed] [Google Scholar]

52. Hiramatsu K, et al. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet. 1997;350:1670–3. [PubMed] [Google Scholar]

53. Weigel LM, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science. 2003;302:1569–71. [PubMed] [Google Scholar]

54. O’Brien FG, et al. Diversity among community isolates of methicillin-resistant Staphylococcus aureus in Australia. J Clin Microbiol. 2004;42:3185–90. [PMC free article] [PubMed] [Google Scholar]

55. Coombs GW, et al. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J Clin Microbiol. 2004;42:4735–43. [PMC free article] [PubMed] [Google Scholar]

56. Udo EE, Pearman JW, Grubb WB. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect. 1993;25:97–108. [PubMed] [Google Scholar]

57. From the Centers for Disease Control and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus--Minnesota and North Dakota, 1997–1999. Jama. 1999;282:1123–5. [PubMed] [Google Scholar]

58. Herold BC, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. Jama. 1998;279:593–8. [PubMed] [Google Scholar]

59. Baggett HC, et al. Community-onset methicillin-resistant Staphylococcus aureus associated with antibiotic use and the cytotoxin Panton-Valentine leukocidin during a furunculosis outbreak in rural Alaska. J Infect Dis. 2004;189:1565–73. [PubMed] [Google Scholar]

60. Community-associated methicillin-resistant Staphylococcus aureus infections in Pacific Islanders--Hawaii, 2001–2003. MMWR Morb Mortal Wkly Rep. 2004;53:767–70. [PubMed] [Google Scholar]

61. Aiello AE, Lowy FD, Wright LN, Larson EL. Meticillin-resistant Staphylococcus aureus among US prisoners and military personnel: review and recommendations for future studies. Lancet Infect Dis. 2006;6:335–41. [PubMed] [Google Scholar]

62. Diep BA, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med. 2008;148:249–57. [PubMed] [Google Scholar]

63. Johansson PJ, Gustafsson EB, Ringberg H. High prevalence of MRSA in household contacts. Scand J Infect Dis. 2007;39:764–8. [PubMed] [Google Scholar]

64. Adcock PM, Pastor P, Medley F, Patterson JE, Murphy TV. Methicillin-resistant Staphylococcus aureus in two child care centers. J Infect Dis. 1998;178:577–80. [PubMed] [Google Scholar]

65. Liu C, et al. A population-based study of the incidence and molecular epidemiology of methicillin-resistant Staphylococcus aureus disease in San Francisco, 2004–2005. Clin Infect Dis. 2008;46:1637–46. [PubMed] [Google Scholar]

66. Seybold U, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis. 2006;42:647–56. [PubMed] [Google Scholar]

67. Gilbert M, et al. Outbreak in Alberta of community-acquired (USA300) methicillin-resistant Staphylococcus aureus in people with a history of drug use, homelessness or incarceration. Cmaj. 2006;175:149–54. [PMC free article] [PubMed] [Google Scholar]

68. Mulvey MR, et al. Community-associated methicillin-resistant Staphylococcus aureus, Canada. Emerg Infect Dis. 2005;11:844–50. [PMC free article] [PubMed] [Google Scholar]

69. Stemper ME, Shukla SK, Reed KD. Emergence and spread of community-associated methicillin-resistant Staphylococcus aureus in rural Wisconsin, 1989 to 1999. J Clin Microbiol. 2004;42:5673–80. [PMC free article] [PubMed] [Google Scholar]

70. David MZ, Rudolph KM, Hennessy TW, Boyle-Vavra S, Daum RS. Molecular epidemiology of methicillin-resistant Staphylococcus aureus, rural southwestern Alaska. Emerg Infect Dis. 2008;14:1693–9. [PMC free article] [PubMed] [Google Scholar]

71. Pan ES, et al. Increasing prevalence of methicillin-resistant Staphylococcus aureus infection in California jails. Clin Infect Dis. 2003;37:1384–8. [PubMed] [Google Scholar]

72. Pannaraj PS, Hulten KG, Gonzalez BE, Mason EO, Jr, Kaplan SL. Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2006;43:953–60. [PubMed] [Google Scholar]

73. Diep BA, Sensabaugh GF, Somboona NS, Carleton HA, Perdreau-Remington F. Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton-Valentine leucocidin. J Clin Microbiol. 2004;42:2080–4. [PMC free article] [PubMed] [Google Scholar]

74. Chavez-Bueno S, et al. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob Agents Chemother. 2005;49:2283–8. [PMC free article] [PubMed] [Google Scholar]

75. Gonzalez BE, et al. Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics. 2005;115:642–8. [PubMed] [Google Scholar]

76. Nourse C, Starr M, Munckhof W. Community-acquired methicillin-resistant Staphylococcus aureus causes severe disseminated infection and deep venous thrombosis in children: literature review and recommendations for management. J Paediatr Child Health. 2007;43:656–61. [PubMed] [Google Scholar]

77. Miller LG, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352:1445–53. [PubMed] [Google Scholar]

78. Adem PV, et al. Staphylococcus aureus sepsis and the Waterhouse-Friderichsen syndrome in children. N Engl J Med. 2005;353:1245–51. [PubMed] [Google Scholar]

79. Rutar T, et al. Ophthalmic manifestations of infections caused by the USA300 clone of community-associated methicillin-resistant Staphylococcus aureus. Ophthalmology. 2006;113:1455–62. [PubMed] [Google Scholar]

80. Munckhof WJ, Krishnan A, Kruger P, Looke D. Cavernous sinus thrombosis and meningitis from community-acquired methicillin-resistant Staphylococcus aureus infection. Intern Med J. 2008;38:283–7. [PubMed] [Google Scholar]

81. Sifri CD, Park J, Helm GA, Stemper ME, Shukla SK. Fatal brain abscess due to community-associated methicillin-resistant Staphylococcus aureus strain USA300. Clin Infect Dis. 2007;45:e113–7. [PubMed] [Google Scholar]

82. Chua T, et al. Molecular epidemiology of methicillin-resistant Staphylococcus aureus bloodstream isolates in urban Detroit. J Clin Microbiol. 2008;46:2345–52. [PMC free article] [PubMed] [Google Scholar]

83. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–15. [PMC free article] [PubMed] [Google Scholar]

84. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:1518–30. [PMC free article] [PubMed] [Google Scholar]

85. Turner KM, Hanage WP, Fraser C, Connor TR, Spratt BG. Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol. 2007;7:30. [PMC free article] [PubMed] [Google Scholar]

86. Shopsin B, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol. 1999;37:3556–63. [PMC free article] [PubMed] [Google Scholar]

87. Feil EJ, et al. How clonal is Staphylococcus aureus? J Bacteriol. 2003;185:3307–16. [PMC free article] [PubMed] [Google Scholar]

88. Tenover FC, et al. Characterization of Staphylococcus aureus isolates from nasal cultures collected from individuals in the United States in 2001 to 2004. J Clin Microbiol. 2008;46:2837–41. [PMC free article] [PubMed] [Google Scholar]

89. Goering RV, et al. Molecular epidemiology of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates from global clinical trials. J Clin Microbiol. 2008;46:2842–7. [PMC free article] [PubMed] [Google Scholar]

90. Hallin M, et al. Genetic relatedness between methicillin-susceptible and methicillin-resistant Staphylococcus aureus: results of a national survey. J Antimicrob Chemother. 2007;59:465–72. [PubMed] [Google Scholar]

91. Feng Y, et al. Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev. 2008;32:23–37. [PubMed] [Google Scholar]

92. Feil EJ, Enright MC. Analyses of clonality and the evolution of bacterial pathogens. Curr Opin Microbiol. 2004;7:308–13. [PubMed] [Google Scholar]

93. Lindsay JA, et al. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol. 2006;188:669–76. [PMC free article] [PubMed] [Google Scholar]

94. Nubel U, et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2008;105:14130–5. [PMC free article] [PubMed] [Google Scholar]

95. Gomes AR, Westh H, de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother. 2006;50:3237–44. [PMC free article] [PubMed] [Google Scholar]

96. Robinson DA, et al. Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet. 2005;365:1256–8. [PubMed] [Google Scholar]

97. Cox RA, Conquest C, Mallaghan C, Marples RR. A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16) J Hosp Infect. 1995;29:87–106. [PubMed] [Google Scholar]

98. Johnson AP, et al. Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS) J Antimicrob Chemother. 2001;48:143–4. [PubMed] [Google Scholar]

99. McDougal LK, et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41:5113–20. [PMC free article] [PubMed] [Google Scholar]

100. Ito T, et al. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45:1323–36. [PMC free article] [PubMed] [Google Scholar]

101. Deurenberg RH, et al. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect. 2007;13:222–35. [PubMed] [Google Scholar]

102. Ito T, et al. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother. 2004;48:2637–51. [PMC free article] [PubMed] [Google Scholar]

103. Ma XX, et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother. 2002;46:1147–52. [PMC free article] [PubMed] [Google Scholar]

104. Oliveira DC, Milheirico C, de Lencastre H. Redefining a structural variant of staphylococcal cassette chromosome mec, SCCmec type VI. Antimicrob Agents Chemother. 2006;50:3457–9. [PMC free article] [PubMed] [Google Scholar]

105. Ruppe E, et al. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother. 2009;53:442–9. [PMC free article] [PubMed] [Google Scholar]

106. Okuma K, et al. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol. 2002;40:4289–94. [PMC free article] [PubMed] [Google Scholar]

107. Lina G, et al. Staphylococcal chromosome cassette evolution in Staphylococcus aureus inferred from ccr gene complex sequence typing analysis. Clin Microbiol Infect. 2006;12:1175–84. [PubMed] [Google Scholar]

108. Oliveira DC, Tomasz A, de Lencastre H. The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb Drug Resist. 2001;7:349–61. [PubMed] [Google Scholar]

109. Hanssen AM, Kjeldsen G, Sollid JU. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother. 2004;48:285–96. [PMC free article] [PubMed] [Google Scholar]

110. Hanssen AM, Ericson Sollid JU. SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol. 2006;46:8–20. [PubMed] [Google Scholar]

111. Wu S, Piscitelli C, de Lencastre H, Tomasz A. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist. 1996;2:435–41. [PubMed] [Google Scholar]

112. Diep BA, et al. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2008;197:1523–30. [PubMed] [Google Scholar]

113. Kennedy AD, et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A. 2008;105:1327–32. [PMC free article] [PubMed] [Google Scholar]

114. Bartels MD, Boye K, Rhod Larsen A, Skov R, Westh H. Rapid increase of genetically diverse methicillin-resistant Staphylococcus aureus, Copenhagen, Denmark. Emerg Infect Dis. 2007;13:1533–40. [PMC free article] [PubMed] [Google Scholar]

115. Gottlieb T, Su WY, Merlino J, Cheong EY. Recognition of USA300 isolates of community-acquired methicillin-resistant Staphylococcus aureus in Australia. Med J Aust. 2008;189:179–80. [PubMed] [Google Scholar]

116. Arias CA, et al. MRSA USA300 clone and VREF--a U.S.-Colombian connection? N Engl J Med. 2008;359:2177–9. [PMC free article] [PubMed] [Google Scholar]

117. Maree CL, Daum RS, Boyle-Vavra S, Matayoshi K, Miller LG. Community-associated methicillin-resistant Staphylococcus aureus isolates causing healthcare-associated infections. Emerg Infect Dis. 2007;13:236–42. [PMC free article] [PubMed] [Google Scholar]

118. Gonzalez BE, et al. Community-associated strains of methicillin-resistant Staphylococccus aureus as the cause of healthcare-associated infection. Infect Control Hosp Epidemiol. 2006;27:1051–6. [PubMed] [Google Scholar]

119. Tristan A, et al. Global distribution of Panton-Valentine leukocidin--positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis. 2007;13:594–600. [PMC free article] [PubMed] [Google Scholar]

120. Larsen AR, et al. Emergence and characterization of community-associated methicillin-resistant Staphyloccocus aureus infections in Denmark, 1999 to 2006. J Clin Microbiol. 2009;47:73–8. [PMC free article] [PubMed] [Google Scholar]

121. Rollason J, et al. Epidemiology of community-acquired meticillin-resistant Staphylococcus aureus obtained from the UK West Midlands region. J Hosp Infect. 2008;70:314–20. [PubMed] [Google Scholar]

122. Holmes A, et al. Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J Clin Microbiol. 2005;43:2384–90. [PMC free article] [PubMed] [Google Scholar]

123. Huijsdens XW, et al. Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob. 2006;5:26. [PMC free article] [PubMed] [Google Scholar]

124. Loeffler A, et al. First isolation of MRSA ST398 from UK animals: a new challenge for infection control teams? J Hosp Infect. 2009;72:269–71. [PubMed] [Google Scholar]

125. Crum NF, et al. Fifteen-year study of the changing epidemiology of methicillin-resistant Staphylococcus aureus. Am J Med. 2006;119:943–51. [PubMed] [Google Scholar]

126. Davis SL, et al. Epidemiology and outcomes of community-associated methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol. 2007;45:1705–11. [PMC free article] [PubMed] [Google Scholar]

127. Diep BA, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–9. [PubMed] [Google Scholar]

128. Voyich JM, et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol. 2005;175:3907–19. [PubMed] [Google Scholar]

129. Li M, et al. Evolution of virulence in epidemic community-associated MRSA. Proc Natl Acad Sci U S A. 2009 In press. [PMC free article] [PubMed] [Google Scholar]

130. Montgomery CP, et al. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J Infect Dis. 2008;198:561–70. [PubMed] [Google Scholar]

131. Wang R, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13:1510–4. [PubMed] [Google Scholar]

132. Rooijakkers SH, et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol. 2006;8:1282–93. [PubMed] [Google Scholar]

133. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188:1310–5. [PMC free article] [PubMed] [Google Scholar]

134. Deleo FR, Diep BA, Otto M. Host Defense and Pathogenesis in Staphylococcus aureus Infections. Infect Dis Clin North Am. 2009;23:17–34. [PMC free article] [PubMed] [Google Scholar]

135. Li M, et al. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol. 2007;66:1136–47. [PubMed] [Google Scholar]

136. Wright J. Staphylococcal leucocidin (Neisser-Wechsberg type) and antileucocidin. Lancet. 1936;227:1002–5. [Google Scholar]

137. Woodin AM. Purification of the two components of leucocidin from Staphylococcus aureus. Biochem J. 1960;75:158–65. [PMC free article] [PubMed] [Google Scholar]

138. Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. Gene. 1998;215:57–67. [PubMed] [Google Scholar]

139. Meyer F, Girardot R, Piemont Y, Prevost G, Colin DA. Analysis of the specificity of Panton-Valentine leucocidin and gamma-hemolysin F component binding. Infect Immun. 2009;77:266–73. [PMC free article] [PubMed] [Google Scholar]

140. Colin DA, Mazurier I, Sire S, Finck-Barbancon V. Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation. Infect Immun. 1994;62:3184–8. [PMC free article] [PubMed] [Google Scholar]

141. Konig B, Prevost G, Piemont Y, Konig W. Effects of Staphylococcus aureus leukocidins on inflammatory mediator release from human granulocytes. J Infect Dis. 1995;171:607–13. [PubMed] [Google Scholar]

142. Woodin AM, Wieneke AA. The participation of calcium, adenosine triphosphate and adenosine triphosphatase in the extrusion of the granule proteins from the polymorphonuclear leucocyte. Biochem J. 1964;90:498–509. [PMC free article] [PubMed] [Google Scholar]

143. Genestier AL, et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J Clin Invest. 2005;115:3117–27. [PMC free article] [PubMed] [Google Scholar]

144. Colin DA, Monteil H. Control of the oxidative burst of human neutrophils by staphylococcal leukotoxins. Infect Immun. 2003;71:3724–9. [PMC free article] [PubMed] [Google Scholar]

145. Gillet Y, et al. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359:753–9. [PubMed] [Google Scholar]

146. Gillet Y, et al. Factors predicting mortality in necrotizing community-acquired pneumonia caused by Staphylococcus aureus containing Panton-Valentine leukocidin. Clin Infect Dis. 2007;45:315–21. [PubMed] [Google Scholar]

147. Kuehnert MJ, et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis. 2006;193:172–9. [PubMed] [Google Scholar]

148. Ellington MJ, et al. Is Panton-Valentine leucocidin associated with the pathogenesis of Staphylococcus aureus bacteraemia in the UK? J Antimicrob Chemother. 2007;60:402–5. [PubMed] [Google Scholar]

149. Voyich JM, et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis. 2006;194:1761–70. [PubMed] [Google Scholar]

150. Montgomery CP, Daum RS. Transcription of inflammatory genes in the lung after infection with community-associated methicillin-resistant Staphylococcus aureus: A role for Panton-Valentine Leukocidin? Infect Immun. 2009 [PMC free article] [PubMed] [Google Scholar]

151. Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med. 2007;13:1405–6. [PubMed] [Google Scholar]

152. Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR. Panton-Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis. 2008;198:1166–70. [PMC free article] [PubMed] [Google Scholar]

153. Diep BA, et al. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS ONE. 2008;3:e3198. [PMC free article] [PubMed] [Google Scholar]

154. Brown EL, et al. The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin Microbiol Infect. 2008 [PMC free article] [PubMed] [Google Scholar]

155. Labandeira-Rey M, et al. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science. 2007;315:1130–3. [PubMed] [Google Scholar]

156. Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991;55:733–51. [PMC free article] [PubMed] [Google Scholar]

157. Burlak C, et al. Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol. 2007;9:1172–90. [PMC free article] [PubMed] [Google Scholar]

158. Coulter SN, et al. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol Microbiol. 1998;30:393–404. [PubMed] [Google Scholar]

159. Degnan BA, et al. Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect Immun. 1998;66:3050–8. [PMC free article] [PubMed] [Google Scholar]

160. Gorwitz RJ, et al. Strategies for clinical management of MRSA in the community: summary of an expert’s meeting convened by the Centers for Disease Control and Prevention. Mar, 2006. Available at: http://www.cdc.gov/ncidod/dhqp/ar_mrsa_ca.html.

161. Barton M, et al. Guidelines for the prevention and management of community-acquired methicillin-resistant Staphylococcus aureus: A perspective for Canadian health care practitioners. Can J Infect Dis Med Microbiol. 2006;17(Suppl C):4C–24C. [PMC free article] [PubMed] [Google Scholar]

162. Nathwani D, et al. Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. J Antimicrob Chemother. 2008;61:976–94. [PubMed] [Google Scholar]

163. Llera JL, Levy RC. Treatment of cutaneous abscess: a double-blind clinical study. Ann Emerg Med. 1985;14:15–9. [PubMed] [Google Scholar]

164. Lee MC, et al. Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus. Pediatr Infect Dis J. 2004;23:123–7. [PubMed] [Google Scholar]

165. Khatib R, et al. Persistent Staphylococcus aureus bacteremia: Incidence and outcome trends over time. Scand J Infect Dis. 2009;41:4–9. [PubMed] [Google Scholar]

166. Hawkins C, et al. Persistent Staphylococcus aureus bacteremia: an analysis of risk factors and outcomes. Arch Intern Med. 2007;167:1861–7. [PubMed] [Google Scholar]

167. Dombrowski JC, Winston LG. Clinical failures of appropriately-treated methicillin-resistant Staphylococcus aureus infections. J Infect. 2008;57:110–5. [PMC free article] [PubMed] [Google Scholar]

168. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330–6. [PMC free article] [PubMed] [Google Scholar]

169. Steinkraus G, White R, Friedrich L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J Antimicrob Chemother. 2007;60:788–94. [PubMed] [Google Scholar]

170. Wang G, Hindler JF, Ward KW, Bruckner DA. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. J Clin Microbiol. 2006;44:3883–6. [PMC free article] [PubMed] [Google Scholar]

171. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis. 2004;38:1673–81. [PubMed] [Google Scholar]

172. Shorr AF, Kunkel MJ, Kollef M. Linezolid versus vancomycin for Staphylococcus aureus bacteraemia: pooled analysis of randomized studies. J Antimicrob Chemother. 2005;56:923–9. [PubMed] [Google Scholar]

173. Wunderink RG, Cammarata SK, Oliphant TH, Kollef MH. Continuation of a randomized, double-blind, multicenter study of linezolid versus vancomycin in the treatment of patients with nosocomial pneumonia. Clin Ther. 2003;25:980–92. [PubMed] [Google Scholar]

174. Weigelt J, et al. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother. 2005;49:2260–6. [PMC free article] [PubMed] [Google Scholar]

175. Kaplan SL, et al. Linezolid versus vancomycin for treatment of resistant Gram-positive infections in children. Pediatr Infect Dis J. 2003;22:677–86. [PubMed] [Google Scholar]

176. Fowler VG, Jr, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65. [PubMed] [Google Scholar]

177. Lentino JR, Narita M, Yu VL. New antimicrobial agents as therapy for resistant gram-positive cocci. Eur J Clin Microbiol Infect Dis. 2008;27:3–15. [PubMed] [Google Scholar]

178. Pan A, Lorenzotti S, Zoncada A. Registered and investigational drugs for the treatment of methicillin-resistant Staphylococcus aureus infection. Recent Pat Antiinfect Drug Discov. 2008;3:10–33. [PubMed] [Google Scholar]

179. Koga T, et al. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob Agents Chemother. 2005;49:3239–50. [PMC free article] [PubMed] [Google Scholar]

180. Parish D, Scheinfeld N. Ceftaroline fosamil, a cephalosporin derivative for the potential treatment of MRSA infection. Curr Opin Investig Drugs. 2008;9:201–9. [PubMed] [Google Scholar]

181. Anderson SD, Gums JG. Ceftobiprole: an extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann Pharmacother. 2008;42:806–16. [PubMed] [Google Scholar]

182. Shaw KJ, et al. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother. 2008;52:4442–7. [PMC free article] [PubMed] [Google Scholar]

183. Dajcs JJ, et al. Lysostaphin is effective in treating methicillin-resistant Staphylococcus aureus endophthalmitis in the rabbit. Curr Eye Res. 2001;22:451–7. [PubMed] [Google Scholar]

184. Lawton EM, Ross RP, Hill C, Cotter PD. Two-peptide lantibiotics: a medical perspective. Mini Rev Med Chem. 2007;7:1236–47. [PubMed] [Google Scholar]

185. Stapleton PD, Shah S, Ehlert K, Hara Y, Taylor PW. The beta-lactam-resistance modifier (−)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology. 2007;153:2093–103. [PMC free article] [PubMed] [Google Scholar]

186. Bubeck Wardenburg J, Schneewind O. Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med. 2008;205:287–94. [PMC free article] [PubMed] [Google Scholar]

187. Shinefield H, et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med. 2002;346:491–6. [PubMed] [Google Scholar]


Page 2

Superantigens produced by Staphylococcus aureus.

Target cell, host factor or responseGene(s)Protein or moleculePutative function/effect on immune system
T-cellssea, seb, secn, sed, see, seg, seh, sei, sej, sek, sel, sepStaphylococcal enterotoxins; SEA, SEB, SECn, SED, SEE, SEG, SEH, SEI, SEJ, SEK, SEL, and SEPActivate T-cells (superantigen)
tstToxic shock syndrome toxin-1, TSST-1Activates T-cells (superantigen)