How many daughter cells are produced at the end of meiosis?

Meiosis is a process where a single cell divides twice to produce four cells containing half the original amount of genetic information. These cells are our sex cells – sperm in males, eggs in females.

  • During meiosis one cell divides twice to form four daughter cells.
  • These four daughter cells only have half the number of chromosomes of the parent cell – they are haploid.
  • Meiosis produces our sex cells or gametes (eggs in females and sperm in males).

Meiosis can be divided into nine stages. These are divided between the first time the cell divides (meiosis I) and the second time it divides (meiosis II):

Meiosis I

1. Interphase:

  • The DNA in the cell is copied resulting in two identical full sets of chromosomes.
  • Outside of the nucleus are two centrosomes, each containing a pair of centrioles, these structures are critical for the process of cell division.
  • During interphase, microtubules extend from these centrosomes.

2. Prophase I:

  • The copied chromosomes condense into X-shaped structures that can be easily seen under a microscope.
  • Each chromosome is composed of two sister chromatids containing identical genetic information.
  • The chromosomes pair up so that both copies of chromosome 1 are together, both copies of chromosome 2 are together, and so on.
  • The pairs of chromosomes may then exchange bits of DNA in a process called recombination or crossing over.
  • At the end of Prophase I the membrane around the nucleus in the cell dissolves away, releasing the chromosomes.
  • The meiotic spindle, consisting of microtubules and other proteins, extends across the cell between the centrioles.

3. Metaphase I:

  • The chromosome pairs line up next to each other along the centre (equator) of the cell.
  • The centrioles are now at opposites poles of the cell with the meiotic spindles extending from them.
  • The meiotic spindle fibres attach to one chromosome of each pair.

4. Anaphase I:

  • The pair of chromosomes are then pulled apart by the meiotic spindle, which pulls one chromosome to one pole of the cell and the other chromosome to the opposite pole.
  • In meiosis I the sister chromatids stay together. This is different to what happens in mitosis and meiosis II.

5. Telophase I and cytokinesis:

  • The chromosomes complete their move to the opposite poles of the cell.
  • At each pole of the cell a full set of chromosomes gather together.
  • A membrane forms around each set of chromosomes to create two new nuclei.
  • The single cell then pinches in the middle to form two separate daughter cells each containing a full set of chromosomes within a nucleus. This process is known as cytokinesis.

Meiosis II

6. Prophase II:

  • Now there are two daughter cells, each with 23 chromosomes (23 pairs of chromatids).
  • In each of the two daughter cells the chromosomes condense again into visible X-shaped structures that can be easily seen under a microscope.
  • The membrane around the nucleus in each daughter cell dissolves away releasing the chromosomes.
  • The centrioles duplicate.
  • The meiotic spindle forms again.

7. Metaphase II:

  • In each of the two daughter cells the chromosomes (pair of sister chromatids) line up end-to-end along the equator of the cell.
  • The centrioles are now at opposites poles in each of the daughter cells.
  • Meiotic spindle fibres at each pole of the cell attach to each of the sister chromatids.

8. Anaphase II:

  • The sister chromatids are then pulled to opposite poles due to the action of the meiotic spindle.
  • The separated chromatids are now individual chromosomes.

9. Telophase II and cytokinesis:

  • The chromosomes complete their move to the opposite poles of the cell.
  • At each pole of the cell a full set of chromosomes gather together.
  • A membrane forms around each set of chromosomes to create two new cell nuclei.
  • This is the last phase of meiosis, however cell division is not complete without another round of cytokinesis.
  • Once cytokinesis is complete there are four granddaughter cells, each with half a set of chromosomes (haploid):
    • in males, these four cells are all sperm cells
    • in females, one of the cells is an egg cell while the other three are polar bodies (small cells that do not develop into eggs).

How many daughter cells are produced at the end of meiosis?

Illustration showing the nine stages of meiosis.
Image credit: Genome Research Limited

Can you spare 5-8 minutes to tell us what you think of this website? Open survey

Daughter cells are cells that result from the division of a single parent cell. They are produced by the division processes of mitosis and meiosis. Cell division is the reproductive mechanism whereby living organisms grow, develop, and produce offspring.

At the completion of the mitotic cell cycle, a single cell divides forming two daughter cells. A parent cell undergoing meiosis produces four daughter cells. While mitosis occurs in both prokaryotic and eukaryotic organisms, meiosis occurs in eukaryotic animal cells, plant cells, and fungi.

  • Daughter cells are cells that are the result of a single dividing parent cell. Two daughter cells are the final result from the mitotic process while four cells are the final result from the meiotic process.
  • For organisms that reproduce via sexual reproduction, daughter cells result from meiosis. It is a two-part cell division process that ultimately produces an organism's gametes. At the end of this process, the result is four haploid cells.
  • Cells have an error-checking and correcting process that helps to ensure the proper regulation of mitosis. If errors occur, cancerous cells that continue to divide may be the result.

3d illustration depicting cell division, a process whereby a cell divides into two new daughter cells with the same genetic material. somersault18:24 / iStock / Getty Images Plus

Mitosis is the stage of the cell cycle that involves the division of the cell nucleus and the separation of chromosomes. The division process is not complete until after cytokinesis, when the cytoplasm is divided and two distinct daughter cells are formed. Prior to mitosis, the cell prepares for division by replicating its DNA and increasing its mass and organelle numbers. Chromosome movement occurs in the different phases of mitosis:

  • Prophase
  • Metaphase
  • Anaphase
  • Telophase

During these phases, chromosomes are separated, moved to opposite poles of the cell, and contained within newly formed nuclei. At the end of the division process, duplicated chromosomes are divided equally between two cells. These daughter cells are genetically identical diploid cells that have the same chromosome number and chromosome type.

Somatic cells are examples of cells that divide by mitosis. Somatic cells consist of all body cell types, excluding sex cells. The somatic cell chromosome number in humans is 46, while the chromosome number for sex cells is 23.

In organisms that are capable of sexual reproduction, daughter cells are produced by meiosis. Meiosis is a two part division process that produces gametes. The dividing cell goes through prophase, metaphase, anaphase, and telophase twice. At the end of meiosis and cytokinesis, four haploid cells are produced from a single diploid cell. These haploid daughter cells have half the number of chromosomes as the parent cell and are not genetically identical to the parent cell.

In sexual reproduction, haploid gametes unite in fertilization and become a diploid zygote. The zygote continues to divide by mitosis and develops into a fully functioning new individual.

How do daughter cells end up with the appropriate number of chromosomes after cell division? The answer to this question involves the spindle apparatus. The spindle apparatus consists of microtubules and proteins that manipulate chromosomes during cell division. Spindle fibers attach to replicated chromosomes, moving and separating them when appropriate. The mitotic and meiotic spindles move chromosomes to opposite cell poles, ensuring that each daughter cell gets the correct number of chromosomes. The spindle also determines the location of the metaphase plate. This centrally localized site becomes the plane on which the cell eventually divides.

The final step in the process of cell division occurs in cytokinesis. This process begins during anaphase and ends after telophase in mitosis. In cytokinesis, the dividing cell is split into two daughter cells with the help of the spindle apparatus.

In animal cells, the spindle apparatus determines the location of an important structure in the cell division process called the contractile ring. The contractile ring is formed from actin microtubule filaments and proteins, including the motor protein myosin. Myosin contracts the ring of actin filaments forming a deep groove called a cleavage furrow. As the contractile ring continues to contract, it divides the cytoplasm and pinches the cell in two along the cleavage furrow.

Plant cells do not contain asters, star-shaped spindle apparatus microtubules, which help determine the site of the cleavage furrow in animal cells. In fact, no cleavage furrow is formed in plant cell cytokinesis. Instead, daughter cells are separated by a cell plate formed by vesicles that are released from Golgi apparatus organelles. The cell plate expands laterally and fuses with the plant cell wall forming a partition between the newly divided daughter cells. As the cell plate matures, it eventually develops into a cell wall.

The chromosomes within daughter cells are termed daughter chromosomes. Daughter chromosomes result from the separation of sister chromatids occuring in anaphase of mitosis and anaphase II of meiosis. Daughter chromosomes develop from the replication of single-stranded chromosomes during the synthesis phase (S phase) of the cell cycle. Following DNA replication, the single-stranded chromosomes become double-stranded chromosomes held together at a region called the centromere. Double-stranded chromosomes are known as sister chromatids. Sister chromatids are eventually separated during the division process and equally distributed among newly formed daughter cells. Each separated chromatid is known as a daughter chromosome.

Transmission electron micrograph (TEM) of a section through a cancer cell dividing by mitosis into two new daughter cells. Science Photo Library - STEVE GSCHMEISSNER / Brand X Pictures / Getty Images

Mitotic cell division is strictly regulated by cells to ensure that any errors are corrected and that cells divide properly with the correct number of chromosomes. Should mistakes occur in cell error checking systems, the resulting daughter cells may divide unevenly. While normal cells produce two daughter cells by mitotic division, cancer cells are distinguished for their ability to produce more than two daughter cells.

Three or more daughter cells may develop from dividing cancer cells and these cells are produced at a faster rate than normal cells. Due to the irregular division of cancer cells, daughter cells may also end up with too many or not enough chromosomes. Cancer cells often develop as a result of mutations in genes that control normal cell growth or that function to suppress cancer cell formation. These cells grow uncontrollably, exhausting the nutrients in the surrounding area. Some cancer cells even travel to other locations in the body via the circulatory system or lymphatic system.

  • Reece, Jane B., and Neil A. Campbell. Campbell Biology. Benjamin Cummings, 2011.