Effect of ethanol on membrane permeability A level

  • View PDF

Effect of ethanol on membrane permeability A level

Volume 101, Issue 4, 17 August 2011, Pages 847-855

Effect of ethanol on membrane permeability A level

https://doi.org/10.1016/j.bpj.2011.07.013Get rights and content

  • View PDF

Volume 90, Issue 4, 15 February 2006, Pages 1121-1135

Effect of ethanol on membrane permeability A level

https://doi.org/10.1529/biophysj.105.062364Get rights and content

1. Cantor, R. S. 2003. Receptor desensitization by neurotransmitters in membranes: are neurotransmitters the endogenous anesthetics? Biochemistry. 42:11891–11897. [PubMed] [Google Scholar]

2. Mazzeo, A. R., J. Nandi, and R. A. Levine. 1988. Effects of ethanol on parietal cell membrane phospholipids and proton pump function. Am. J. Physiol. 254:G57–G64. [PubMed] [Google Scholar]

3. Cantor, R. 1997. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biophys. J. 36:2339–2344. [PubMed] [Google Scholar]

4. Eckenhoff, R. G. 2001. Promiscuous ligands and attractive cavities. How do the inhaled anesthetics work? Mol. Interv. 1:258–268. [PubMed] [Google Scholar]

5. Tang, P., and Y. Xu. 2002. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. USA. 99:16035–16040. [PMC free article] [PubMed] [Google Scholar]

6. Klemm, W. R. 1998. Biological water and its role in the effects of alcohol. Alcohol. 15:249–267. [PubMed] [Google Scholar]

7. Bisson, L. F., and D. E. Block. 2002. Ethanol tolerance in Saccharomyces. In Biodiversity and Biotechnology of Wine Yeasts. M. Ciani, editor. Research Signpost, Kerala. 85–98.

8. da Silveira, M. G., E. A. Golovina, F. A. Hoekstra, F. M. Rombouts, and T. Abee. 2003. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl. Environ. Microbiol. 69:5826–5832. [PMC free article] [PubMed] [Google Scholar]

9. Cramer, A. C., S. Vlassides, and D. E. Block. 2002. Kinetic model for nitrogen-limited wine fermentations. Biotechnol. Bioeng. 77:49–60. [PubMed] [Google Scholar]

10. Ly, H. V., D. E. Block, and M. L. Longo. 2002. Interfacial tension effect on lipid bilayer rigidity, stability, and area/molecule: a micropipette aspiration approach. Langmuir. 18:8988–8995. [Google Scholar]

11. Ly, H. V., and M. L. Longo. 2004. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys. J. 87:1013–1033. [PMC free article] [PubMed] [Google Scholar]

12. Feller, S. E., C. A. Brown, D. T. Nizza, and K. Gawrisch. 2002. Nuclear Overhauser enhancement spectroscopy cross-relaxation rates and ethanol distribution across membranes. Biophys. J. 82:1396–1404. [PMC free article] [PubMed] [Google Scholar]

13. Lee, B. W., R. Faller, A. K. Sum, I. Vattulainen, M. Patra, and M. Karttunen. 2004. Structural effects of small molecules on phospholipid bilayers investigated by molecular simulations. Fluid Phase Equil. 225:63–68. [Google Scholar]

14. Bemporad, D., J. W. Essex, and C. Luttmann. 2004. Permeation of small molecules through a lipid bilayer: a computer simulation study. J. Phys. Chem. B. 108:4875–4884. [Google Scholar]

15. Koubi, L., M. Tarek, S. Bandyopadhyay, M. L. Klein, and D. Scharf. 2001. Membrane structural perturbations caused by anesthetics and nonimmobilizers: a molecular dynamics investigation. Biophys. J. 81:3339–3345. [PMC free article] [PubMed] [Google Scholar]

16. Koubi, L., M. Tarek, M. L. Klein, and D. Scharf. 2000. Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations. Biophys. J. 78:800–811. [PMC free article] [PubMed] [Google Scholar]

17. Tieleman, D. P., and H. J. C. Berendsen. 1996. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J. Chem. Phys. 105:4871–4880. [Google Scholar]

18. Patra, M., M. Karttunen, M. T. Hyvönen, E. Falck, and I. Vattulainen. 2004. Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J. Phys. Chem. B. 108:4485–4494. [Google Scholar]

19. Falck, E., M. Patra, M. Karttunen, M. T. Hyvönen, and I. Vattulainen. 2004. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys. J. 87:1076–1091. [PMC free article] [PubMed] [Google Scholar]

20. Tieleman, D., M. Sansom, and H. Berendsen. 1999. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys. J. 76:40–49. [PMC free article] [PubMed] [Google Scholar]

21. Chin, J. H., and D. B. Goldstein. 1977. Drug tolerance in biomembranes: a spin label study of the effects of ethanol. Science. 196:684–685. [PubMed] [Google Scholar]

22. Berger, O., O. Edholm, and F. Jahnig. 1997. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72:2002–2013. [PMC free article] [PubMed] [Google Scholar]

23. Lindahl, E., B. Hess, and D. van der Spoel. 2001. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Mod. 7:306–317. [Google Scholar]

24. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, and J. Hermans. 1981. Interaction models for water in relation to protein hydration. In Intermolecular Forces. B. Pullman, editor. Reidel, Dordrecht. 331–342.

25. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684–3690. [Google Scholar]

26. Hess, B., H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije. 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18:1463–1472. [Google Scholar]

27. Kessel, A., D. Tieleman, and N. Ben-Tal. 2004. Implicit solvent model estimates of the stability of model structures of the alamethicin channel. Eur. Biophys. J. 33:16–28. [PubMed] [Google Scholar]

28. Patra, M., M. Karttunen, M. Hyvönen, E. Falck, P. Lindqvist, and I. Vattulainen. 2003. Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys. J. 84:3636–3645. [PMC free article] [PubMed] [Google Scholar]

29. Essman, U., L. Perela, M. L. Berkowitz, H. L. T. Darden, and L. G. Pedersen. 1995. A smooth particle-mesh Ewald method. J. Chem. Phys. 103:8577–8592. [Google Scholar]

30. Chiu, S. W., E. Jakobsson, S. Subramanian, and H. L. Scott. 1999. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophys. J. 77:2462–2469. [PMC free article] [PubMed] [Google Scholar]

31. Pasenkiewicz-Gierula, M., T. Róg, J. Grochowski, P. Serda, R. Czarnecki, T. Librowski, and S. Lochyński. 2003. Effects of carane derivative local anesthetic on a phospholipid bilayer studied by molecular dynamics simulation. Biophys. J. 85:1248–1258. [PMC free article] [PubMed] [Google Scholar]

32. Pabst, G., M. Rappolt, H. Amenitsch, S. Bernstorff, and P. Laggner. 2000a. X-ray kinematography of temperature-jump relaxation probes the elastic properties of fluid bilayers. Langmuir. 16:8994–9001. [Google Scholar]

33. Pabst, G., M. Rappolt, H. Amenitsch, and P. Laggner. 2000b. Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Phys. Rev. E. 62:4000–4009. [PubMed] [Google Scholar]

34. Armen, R. S., O. D. Uitto, and S. E. Feller. 1998. Phospholipid component volumes: determination and application to bilayer structure calculations. Biophys. J. 75:734–744. [PMC free article] [PubMed] [Google Scholar]

35. Vogel, M., C. Münster, W. Fenzl, and T. Salditt. 2000. Thermal unbinding of highly oriented phospholipid membranes. Phys. Rev. Lett. 84:390–393. [PubMed] [Google Scholar]

36. Gullingsrud, J., and K. Schulten. 2004. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86:3496–3509. [PMC free article] [PubMed] [Google Scholar]

37. Nagle, J. F., and S. Tristram-Nagle. 2000. Structure of lipid bilayers. Biochim. Biophys. Acta. 1469:159–195. [PMC free article] [PubMed] [Google Scholar]

38. Tu, K., M. Tarek, M. L. Klein, and D. Scharf. 1998. Effects of anesthetics on the structure of a phospholipid bilayer: molecular dynamics investigation of halothane in the hydrated liquid crystal phase of dipalmitoylphosphatidylcholine. Biophys. J. 75:2123–2134. [PMC free article] [PubMed] [Google Scholar]

39. Löbbcke, L., and G. Cevc. 1995. Effects of short-chain alcohols on the phase behavior and interdigitation of phosphatidylcholine bilayer membranes. Biochim. Biophys. Acta. 1237:59–69. [PubMed] [Google Scholar]

40. Nagle, J. F., R. Zhang, S. Tristram-Nagle, W. Sun, H. I. Petrache, and R. M. Suter. 1996. X-ray structure determination of fully hydrated Lα phase dipalmitoylphosphatidylcholine bilayers. Biophys. J. 70:1419–1431. [PMC free article] [PubMed] [Google Scholar]

41. Adachi, T. 2000. A new method for determining the phase in the x-ray diffraction structure analysis of phosphatidylcholine/alcohol. Chem. Phys. Lipids. 17:93–97. [PubMed] [Google Scholar]

42. Holte, L. L., and K. Gawrisch. 1997. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra. Biochemistry. 36:4669–4674. [PubMed] [Google Scholar]

43. Aratono, M., T. Toyomasu, M. Villeneuve, Y. Uchizono, T. Takiue, K. Motomoura, and N. Ikeda. 1997. Thermodynamic study on the surface formation of the mixture of water and ethanol. J. Colloid Interface Sci. 191:146–153. [PubMed] [Google Scholar]

44. Chanturiya, A., E. Leikina, J. Zimmerberg, and L. V. Chernomordik. 1999. Short-chain alcohols promote an early stage of membrane hemifusion. Biophys. J. 77:2035–2045. [PMC free article] [PubMed] [Google Scholar]

45. Klemm, W. R. 1990. Dehydration. Alcohol. 7:49–59. [PubMed] [Google Scholar]

46. Adamson, A. W., and A. P. Gast. 1997. Physical Chemistry of Surfaces, 6th Ed. Wiley-Interscience, New York.

47. Traube, I. 1891. Ueber die Capillaritätsconstanten organischer Stoffe in wässerigen Lösungen. (About the capillarity constants of organic materials in watery solutions.) Justus Liebigs Ann. Chem. 265:27–55. [Google Scholar]

48. Schobert, S. M., B. E. Chapman, P. W. Kuchel, R. M. Wittig, J. Grotendorst, P. Jansen, and A. A. de Graaf. 1996. Ethanol transport in Zymomonas mobilis measured by using in vivo nuclear magnetic resonance spin transfer. J. Bacteriol. 178:1756–1761. [PMC free article] [PubMed] [Google Scholar]

49. van den Brink-van der Laan, E., V. Chupin, J. A. Killian, and B. de Kruijff. 2004. Small alcohols destabilize the KcsA tetramer via their effect on the membrane lateral pressure. Biochemistry. 43:5937–5942. [PubMed] [Google Scholar]

50. Hauet, N., F. Artzner, F. Boucer, C. Grabielle-Madelmont, I. Cloutier, G. Keller, P. Leiseur, D. Durand, and M. Paternostre. 2003. Interaction between artificial membrane and enflurane, a general volatile anesthetic: DPPC-enflurane interaction. Biophys. J. 84:3123–3137. [PMC free article] [PubMed] [Google Scholar]


Page 2

Average area per lipid for all systems studied in this work

SystemAverage area per lipid
DPPC (pure)(0.655 ± 0.002) nm2
DPPC + ethanol(0.699 ± 0.002) nm2
DPPC + methanol(0.693 ± 0.004) nm2
POPC (pure)(0.677 ± 0.003) nm2
POPC + ethanol(0.699 ± 0.003) nm2
POPC + methanol(0.693 ± 0.003) nm2