A patients monitor is alarming at a false low rate. which action should be performed?

1. W.H.F. World Heart Day. [(accessed on 15 October 2014)]. Available Online: http://www.world-heart-federation.org/what-we-do/awareness/world-heart-day/one-heart/

2. Hao Y., Foster R. Wireless body sensor networks for health-monitoring applications. Physiol. Meas. 2008;29:27–56. [PubMed] [Google Scholar]

3. Pantelopoulos A., Bourbakis N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Syst. 2010;40:1–12. [Google Scholar]

4. Lee S., Wang L., Chen T., Lin K., Fang Q. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications. IEEE J. Biomed. Health Inform. 2015;19:247–255. [PubMed] [Google Scholar]

5. Chazal P.D., Dwyer M.O., Reilly R.B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 2004;51:1196–1206. [PubMed] [Google Scholar]

6. Chazal P.D., Dwyer M.O., Reilly R.B. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 2006;53:2535–2543. [PubMed] [Google Scholar]

7. Llamedo M., Martinez J.P. Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 2011;58:616–625. [PubMed] [Google Scholar]

8. Kutlu Y., Kuntalp D. A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 2011;41:37–45. [PubMed] [Google Scholar]

9. Lannoy G., Francois D., Delbeke J., Verleysen M. Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 2012;59:241–247. [PubMed] [Google Scholar]

10. Banaee H., Ahmed M.U., Loutfi A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors. 2013;13:17472–17500. [PMC free article] [PubMed] [Google Scholar]

11. Oresko J.J., Jin Z., Cheng J., Huang S., Sun Y., Duschl H., Cheng A.C. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans. Inf. Technol. B. 2010;14:734–740. [PubMed] [Google Scholar]

12. Lin C.T., Chang K.C., Lin C.L., Chiang C.C., Lu S.W., Chang S.S., Lin B.S., Liang H.Y., Chen R.J., Lee Y.T., et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans. Inf. Technol. Biomed. 2010;14:726–733. [PubMed] [Google Scholar]

13. Winkler S., Schieber M., Lücke S., Heinze P., Schweizer T., Wegertseder D., Scherf M., Nettlau H., Henke S., Braecklein M., et al. A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology—Feasibility study. Int. J. Cardiol. 2011;153:55–58. [PubMed] [Google Scholar]

14. Andreoli A., Gravina R., Giannantonio R., Pierleoni P., Fortino G. SPINE-HRV: A BSN-based toolkit for heart rate variability analysis in the time-domain. Wearable Auton. Biomed. Devices Syst. Smart Environ. (Lect. Notes Electr. Eng.) 2010;75:369–389. [Google Scholar]

15. Lee J., McManus D.D., Merchant S., Chon K.H. Automatic motion and noise artifact detection in holter ECG data using empirical mode decomposition and statistical approaches. IEEE Trans. Biomed. Eng. 2012;59:1499–1506. [PubMed] [Google Scholar]

16. Pawar T., Anantakrishnan N.S., Chaudhuri S., Duttagupta S.P. Transition detection in body movement activities for wearable ECG. IEEE Trans. Biomed. Eng. 2007;54:1149–1152. [PubMed] [Google Scholar]

17. Pawar T., Chaudhuri S., Duttagupta S.P. Body movement activity recognition for ambulatory cardiac monitoring. IEEE Trans. Biomed. Eng. 2007;54:874–882. [PubMed] [Google Scholar]

18. Lawless S. Crying wolf: False alarms in a pediatric intensive care unit. Crit. Care. Med. 1994;22:981–985. [PubMed] [Google Scholar]

19. Tsien C.L., Fackler J.C. Poor prognosis for existing monitors in the intensive care unit. Crit. Care Med. 1997;25:614–619. [PubMed] [Google Scholar]

20. Schmid F., Goepfert M.S., Reuter D.A. Patient monitoring alarms in the ICU and in the operating room. Crit. Care. 2013;17:216–222. [PMC free article] [PubMed] [Google Scholar]

21. George B.M., Roger G.M. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. 2001;20:45–50. [PubMed] [Google Scholar]

22. Clifford G.D., Moody G.B. Signal quality in cardiorespiratory monitoring. Physiol. Meas. 2012;33 doi: 10.1088/0967-3334/33/9/E01.. [CrossRef] [Google Scholar]

23. Hayn D., Jammerbund B., Schreier G. QRS detection based ECG quality assessment. Physiol. Meas. 2012;33:1449–1461. [PubMed] [Google Scholar]

24. Clifford G.D., Lopez D., Li Q., Rezek I. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 2012;33:1419–1433. [PubMed] [Google Scholar]

25. Aboukhalil A., Nielsen L., Saeed M., Roger G.M., Clifford G.D. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. J. Biomed. Inform. 2008;41:442–451. [PMC free article] [PubMed] [Google Scholar]

26. Li Q., Clifford G.D. Signal quality and data fusion for false alarm reduction in the intensive care unit. J. Electrocardiol. 2012;45:596–603. [PubMed] [Google Scholar]

27. Yang G.Z. Body Sensor Networks. Springer-Verlag; London, UK: 2006. [Google Scholar]

28. ANSI/AAMI/ISO EC57:1998/(R)2008 Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms. Association for the Advancement of Medical Instrumentation; Arlington, TX, USA: 1999. [Google Scholar]

29. Dash P.K. Electrocardiogram monitoring. Indian J. Anaesth. 2002;46:251–260. [Google Scholar]

30. Barill T.P. The Six Second ECG: A Practical Guidebook to Basic ECG Interpretation. SkillStat Learning Inc.; North Vancouver, BC, Canada: 2005. Cardiac Monitoring System; pp. 64–73. [Google Scholar]

31. Simon F., Martinez J.P., Laguna P., Grinsven B.V., Rutten C., Houben R. Impact of sampling rate reduction on automatic ECG delineation. Proceedings of the 29th Annual International Conference of the IEEE EMBS; Lyon, France. 23–26 August 2007; pp. 2587–2590. [PubMed] [Google Scholar]

32. Rooijakkers M.J. Design space exploration for scalable R-peak detection. Proceedings of Graduate Symposium Eindhoven University of Technology; Eindhoven, The Netherlands. 23 August 2010; pp. 1–12. [Google Scholar]

33. Zou Y., Han J., Weng X., Zeng X. An ultra-low power QRS complex detection algorithm based on down-sampling wavelet transform. IEEE Signal Process. Lett. 2013;20:515–518. [Google Scholar]

34. Clifford G.D., Azuaje F., McSharry P. Advanced Methods and Tools for ECG Data Analysis. Artech House; London, UK: 2006. ECG statistics, noise, artifacts, and missing data; pp. 55–99. [Google Scholar]

35. Chen H.C., Chen S.W. A moving average based filtering system with its application to real-time QRS detection. Proceedings of the Computers in Cardiology; Chalkidiki, Greece. 21–24 September 2003; pp. 585–588. [Google Scholar]

36. Witten I.H., Frank E., Hall M.A. Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed. Morgan Kaufmann/Elsevier; Burlington, ON, Canada: 2005. [Google Scholar]

37. Lee R.G., Chou I.C., Lai C.C., Liu M.H., Chiu M.J. A novel QRS detection algorithm applied to the analysis for heart rate variability of patients with sleep apnea. Biomed. Eng. Appl. Basic Commun. 2005;17:258–262. [Google Scholar]

38. So H.H., Chan K.L. Development of QRS detection method for real-time ambulatory cardiac monitor. Proceedings of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. 30 October–2 November 1997; pp. 289–292. [Google Scholar]

39. Pan J., Tompkins W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985;32:230–236. [PubMed] [Google Scholar]

40. Tsipouras M.G., Fotiadis D.I., Sideris D. An arrhythmia classification system based on the RR-interval signal. Artif. Intell. Med. 2005;33:237–250. [PubMed] [Google Scholar]

41. Tanantong T., Nantajeewarawat E., Thiemjarus S. Toward continuous ambulatory monitoring using a wearable and wireless ECG-recording system: A study on the effects of signal quality on arrhythmia detection. Bio-Med. Mater. Eng. 2014;24:391–404. [PubMed] [Google Scholar]

42. Schumm J., Axmann S., Arnrich B., Troster G. Automatic signal appraisal for unobtrusive ECG measurements. Int. J. Bioelectromagn. 2010;12:158–164. [Google Scholar]

43. Schumm J., Arnrich B., Troster G. ECG monitoring in an airplane seat: Appraising the signal quality. IEEE Pervasive Comput. 2012;11:28–34. [Google Scholar]

44. Theekakul P., Thiemjarus S., Nantajeewarawat E. A hybrid framework for real-time continuous monitoring with body sensor networks. Int. J. Innov. Comput. Inf. Control. 2013;9:2377–2392. [Google Scholar]

45. Christov I., Jekova I., Bortolan G. Premature ventricular contraction classification by the kth nearest-neighbours rule. Physiol. Meas. 2005;26:123–130. [PubMed] [Google Scholar]

46. Chiristov I., Gómez-Herrero G., Krasteva V., Jekova I., Gotchev A., Egiazarian K. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification. Med. Eng. Phys. 2006;28:876–887. [PubMed] [Google Scholar]

47. Begum S., Islam M.S., Ahmed M.U., Funk P. K-NN based interpolation to handle artifacts for heart rate variability analysis. Proceedings of the IEEE International Symposium on Signal Processing and Information Technology; Bilbao, Spain. 14–17 December 2011; pp. 387–392. [Google Scholar]

48. Atallah L., Lo B., King R., Yang G.-Z. Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circuits Syst. 2011;5:320–329. [PubMed] [Google Scholar]

49. Gupta P., Dallas T. Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed. Eng. 2014;61:1780–1786. [PubMed] [Google Scholar]

50. Savonen K.P., Lakka T.A., Laukkanen J.A., Halonen P.M., Rauramaa T.H., Salonen J.T., Rauramaa R. Heart rate response during exercise test and cardiovascular mortality in middle-aged men. Eur. Heart J. 2006;27:582–588. [PubMed] [Google Scholar]

51. Clifford G.D., Lopez D., Li Q., Rezek I. Signal quality indices and data fusion for determinig acceptability of eletrocardiograms collected in noisy ambulatory environments. Proceedings of the Computing in Cardiology Conference; Hangzhou, China. 18–21 September 2011; pp. 285–288. [Google Scholar]

52. Sayadi O., Shamsollahi M.B. Life-threatening arrhythmia verification in ICU patients using the joint cardiovascular dynamical model and a Bayesian filter. IEEE Trans. Biomed. Eng. 2011;58:2748–2757. [PubMed] [Google Scholar]

53. Salas-Boni R., Bai Y., Harris P.R.E., Drew B.J. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal. J. Electrocardiol. 2014;47:775–780. [PubMed] [Google Scholar]

54. Saeed M., Villarroel M., Reisner A.T., Clifford G.D., Lehman L., Moody G.B., Heldt T., Kyaw T.H., Moody B., Mark R.G. Multiparameter intelligent monitoring in intensive care II (MIMICII): A public-access ICU database. Crit. Care Med. 2011;39:952–960. [PMC free article] [PubMed] [Google Scholar]

55. Hu S., Shao Z., Tan J. A real-time cardiac arrhythmia classification system with wearable sensor networks. Sensors. 2012;12:12844–12869. [PMC free article] [PubMed] [Google Scholar]

56. Takalokastari T., Alasaarela E., Kinnunen M., Jamsa T. Quality of the wireless electrocardiogram signal during physical exercise in different age groups. IEEE J. Biomed. Health Inform. 2014;18:1058–1064. [PubMed] [Google Scholar]


Page 2

Specification of the BSN nodes used in this study.

ModuleParameterSpecification
Processor (TI MSP430F1611)Flash memory48 KB
RAM10 KB
On-chip ADC resolution12 bit
ADC channels8 channels
DAC channels2 channels
Radio transceiver (TI CC2420)Wireless communication standardIEEE 802.15.4 (2.4 GHz)
Data rate250 Kbps
Ranges indoor and outdoor50 m and 125 m
EEPROM (AT 45DB321)Flash memory4 MB
SRAM buffers512/528 bytes
Program/Erase cycle100,000 cycles